Skip to main content
Log in

An adaptive Huber method with local error control, for the numerical solution of the first kind Abel integral equations

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In contrast to the existing plethora of adaptive numerical methods for differential and integro-differential equations, there seems to be a shortage of adaptive methods for purely integral equations with weakly singular kernels, such as the first kind Abel equation. In order to make up this deficiency, an adaptive procedure based on the product-integration method of Huber is developed in this work. In the procedure, an a posteriori estimate of the dominant expansion term of the local discretisation error at a given grid node is used to determine the size of the next integration step, in a way similar to the adaptive solvers for ordinary differential equations. Computational experiments indicate that in practice the control of the local errors is sufficient for bringing the true global errors down to the level of a prescribed error tolerance. The lower limit of the acceptable values of the error tolerance parameter depends on the interference of machine errors, and the quality of the approximations available for the method coefficients specific for a given kernel function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolfsson K, Enelund M, Larsson S (2003) Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel. Comput Methods Appl Mech Eng 192: 5285–5304

    Article  MathSciNet  Google Scholar 

  2. Baker CTH (1977) The numerical treatment of integral equations. Clarendon Press, Oxford

    MATH  Google Scholar 

  3. Bieniasz LK (1992) ELSIM-A user-friendly PC program for electrochemical kinetic simulations. Version 1.0-solution of integral equations for linear scan and cyclic voltammetry. Comput Chem 16: 11–14

    Article  Google Scholar 

  4. Bieniasz LK (1993) An efficient numerical method of solving integral equations for cyclic voltammetry. J Electroanal Chem 347: 15–30

    Article  Google Scholar 

  5. Britz D (2005) Digital simulation in electrochemistry, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  6. Cameron RF, McKee S (1983) High accuracy product integration methods for the Abel equation, and their application to a problem in scattering theory. Int J Numer Methods Eng 19: 1527–1536

    Article  MATH  MathSciNet  Google Scholar 

  7. Cameron RF, McKee S (1984) High accuracy convergent product integration methods for the generalized Abel equation. J Integral Equations 7: 103–125

    MATH  MathSciNet  Google Scholar 

  8. Cameron RF, McKee S (1985) The analysis of product integration methods for Abel’s equation using discrete fractional differentiation. IMA J Numer Anal 5: 339–353

    Article  MATH  MathSciNet  Google Scholar 

  9. Carey GF (1997) Computational grids generation, adaptation and solution strategies. Taylor & Francis, Washington

    Google Scholar 

  10. Cody WJ (1969) Rational Chebyshev approximations for the error function. Math Comput 23: 631–637

    Article  MATH  MathSciNet  Google Scholar 

  11. Cody WJ, Paciorek KA, Thacher HC Jr. (1970) Chebyshev approximations for Dawson’s integral. Math Comput 24: 171–178

    Article  MATH  MathSciNet  Google Scholar 

  12. Gorenflo R, Vessella S (1991) Abel integral equations. Lect Notes Math 1461: 1–215

    Article  MathSciNet  Google Scholar 

  13. Gustafsson K (1994) Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods. ACM Trans Math Softw 20: 496–517

    Article  MathSciNet  Google Scholar 

  14. Huber A (1939) Eine Näherungsmethode zur Auflösung Volterrascher Integralgleichungen. Monatsschr Math Phys 47: 240–246

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang Y (2007) Adaptive collocation methods for Volterra integral and integro-differential equations. Appl Math Comput 191: 67–78

    Article  MathSciNet  Google Scholar 

  16. López-Fernández M, Lubich C, Schädle A (2008) Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J Sci Comput 30: 1015–1037

    Article  MathSciNet  Google Scholar 

  17. Lovrić M (1996) Simulation of electrochemical problems by numerical integration. Russ J Electrochem 32: 988–995

    Google Scholar 

  18. Lubich C (2004) Convolution quadrature revisited. BIT Numer Math 44: 503–514

    Article  MathSciNet  Google Scholar 

  19. McKee S (1982) A review of linear multistep methods and product integration methods and their convergence analysis for first kind Volterra integral equations. In: Baker CTH, Miller GF(eds) Treatment of integral equations by numerical methods. Academic Press, London, pp 153–161

    Google Scholar 

  20. Mirkin MV, Nilov AP (1991) Modification of the Huber method for solving integral equations on a non-uniform grid. Comput Chem 15: 55–58

    Article  Google Scholar 

  21. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography, single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36: 706–723

    Article  Google Scholar 

  22. Nicholson RS, Olmstead ML (1972) Numerical solution of integral equations. In: Mattson JS, Mark HB Jr., MacDonald HC Jr. (eds) Computers in chemistry and instrumentation, vol 2, electrochemistry, calculations, simulation, and instrumentation. Marcel Dekker, New York, pp 119–138

    Google Scholar 

  23. Söderlind G (1998) The automatic control of numerical integration CWI Quart 11: 55–74

    Google Scholar 

  24. Weiss R, Anderssen RS (1972) A product integration method for a class of singular first kind Volterra equations. Numer Math 18: 442–456

    Article  MATH  MathSciNet  Google Scholar 

  25. Weiss R (1972) Product integration for the generalized Abel equation. Math Comput 26: 177–190

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Bieniasz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieniasz, L.K. An adaptive Huber method with local error control, for the numerical solution of the first kind Abel integral equations. Computing 83, 25–39 (2008). https://doi.org/10.1007/s00607-008-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-008-0010-y

Keywords

Mathematics Subject Classification (2000)

Navigation