Skip to main content
Log in

Artificial hybridization of some Abies species

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Crossability relationships between six species of the Mediterranean, North American and Asian firs was tested using Abies alba and A. nordmanniana as female parents and A. alba, A. numidica, A. procera, A. grandis, and A. holophylla as pollen parents. An overwhelming majority of the crosses attempted was found to be compatible. In particular, it is true of the A. alba cross with A. numidica and those of A. nordmanniana with A. alba, A. numidica, A. procera, and A. holophylla. The crossing A. nordmanniana × A. grandis was the only exception producing empty seeds. Cytological study revealed the gametophytic incompatibility to be responsible for reproductive isolation of these species. At seedling level, all the interspecific crosses of A. nordmanniana surpassed in height growth self-pollinated control. The cross A. alba × A. numidica was comparable in this respect with control variants from open and self-pollination. Except for height growth, some characteristics of needle stomata are provided for individual crosses. The crosses A. nordmanniana with A. procera and A. holophylla represent unique interspecific combinations whose existence has not been reported yet. Based on needle stomata characteristics, the potential for increased resistance and drought tolerance of the hybrids with A. numidica involved as parental species is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams WT, Neale DB, Loopstra CA (1988) Verifying controlled crosses in conifer tree-improvement programs. Silvae Genet 37:147–151

    Google Scholar 

  • Aussenac G (2002) Ecology and ecophysiology of circum-mediterranean firs in the contex of climate change. Ann For Sci 59:823–832

    Article  Google Scholar 

  • Aytug B (1959) Abies equi-trojani Aschers. et Sinten. est une espéce dorigine hybride daprés létude des pollens. Pollen Spores 1:273–278

    Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Ann Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Critchfield WB (1988) Hybridization of the California firs. For Sci 34:139–151

    Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  PubMed  CAS  Google Scholar 

  • Duffield JW, Snyder EB (1958) Benefits from hybridizing American forest tree species. J For 56:809–815

    Google Scholar 

  • Frederick DJ (1977) An integrated population of Abies grandis × A. concolor in Central Idaho and its relation to decay. Silvae Genet 26:8–10

    Google Scholar 

  • Galgoci M, Manka P, Kormutak A, Kuna R, Bolecek P, Gömöry D (2011) Height growth of selected interspecific hybrid fir seedlings (Abies sp.). In: symposium proceedings “dendrological days in Arboretum Mlynany SAS”, pp. 53–59. [in Slovak]

  • Gathy PP (1957) A propos deľ hybride natural Abies concolor (Gord.) Engelman × A. grandis (Link.). Silvae Genet 6:186–190

    Google Scholar 

  • Greguss L (1988) Das Züchtungsprogramm zur Erhöhung der Widerstandsfähigkeit der Tanne durch Hybridisation und seine Realisierung. In: 5. IUFRO-Tannensymposium Zvolen, pp.167–177

  • Greguss L (1992) Evaluation of early growth of interspecific hybrids of firs on the example of permanent testing plot Drieňova. Lesn Čas For J 38:223–238 [in Slovak]

    Google Scholar 

  • Hansen OK, Vendramin GG, Sebastian F, Edwards KJ (2005) Development of microsatellite markers in Abies nordmanniana (Stev.) Spach and cross-species amplification in the Abies genus. Mol Ecol Note 5:784–787

    Article  CAS  Google Scholar 

  • Harlow WM, Harrar ES (1958) Textbook of Dendrology. McGraw-Hill Book Company, Inc., New York-Toronto

    Google Scholar 

  • Hawley GJ, DeHayes DH (1985) Hybridization among several North American firs. I. Crossability. Can J For Res 15:42–49

    Article  Google Scholar 

  • Keng H, Little EL (1961) Needle characteristics of the hybrid pines. Silvae Genet 10:131–146

    Google Scholar 

  • Klaehn FU, Winieski JA (1962) Interspecific hybridization in the genus Abies. Silvae Genet 11:130–142

    Google Scholar 

  • Kormutak A (1985) Study on species hybridization within the genus Abies. Veda, Bratislava

    Google Scholar 

  • Kormutak A (1986) Gametophytic incompatibility between Abies cephalonica Loud. and A. concolor (Gord. et Glend.) Lindl. var. lowiana (Gord./Lemm.). Biologia 41:895–902

    Google Scholar 

  • Kormutak A (2004) Crossability relationships between some representatives of the Mediterranean, Northamerican and Asian firs (Abies sp.). Veda, Bratislava

    Google Scholar 

  • Kormutak A, Vookova B (2001) Early growth characteristics of some Abies hybrids. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Kluwer Acad Publ, Dodrecht, pp 331–337

    Chapter  Google Scholar 

  • Kormutak A, Vookova B, Ziegenhagen B (2002) Reproductive isolation between colorado white fir (Abies concolor) and the mediterranean firs. Biologia 57:527–532

    Google Scholar 

  • Kormutak A, Vookova B, Ziegenhagen B, Know HY, Hong YP (2004) Chloroplast DNA variation in some representatives of the Asian, North American and mediterranean firs (Abies spp.). Silvae Genet 53:99–104

    Google Scholar 

  • Kormutak A, Lee SW, Hong KN, Yang BH, Hong YP (2008) Crossability relationships between Korean firs Abies koreana, A. nephrolepis, and A. holophylla and some other representatives of the genus Abies. Biologia Sect Bot 63:94–99

    Article  CAS  Google Scholar 

  • Kormutak A, Vookova B, Salaj T, Camek V, Galgoci M, Manka P, Bolecek P, Kuna R, Kobliha J (2012) Crossability relationships between noble, manchurian and caucasian firs. Acta Biol Cracoviensia, Ser Bot 54:1–4

    Google Scholar 

  • Krüssman G (1983) Handbüch der Nadelgehölze. Verlag Paul Prey, Berlin und Hamburg

    Google Scholar 

  • Krylov GV, Maradudin II, Micheev NI, Kozakova NF (1986) Firs. Agropromizdat, Moscow [in Russian]

    Google Scholar 

  • Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Nat Acad Sci USA 99:14590–14594

    Article  PubMed  CAS  Google Scholar 

  • Liu TS (1971) A monograph of the genus Abies. National Taiwan University, Taipei

    Google Scholar 

  • Mattfeld J (1926) Die Europäischen und Mediterranen Abies Arten. Die Pflanzen-Areale 1:22–29

    Google Scholar 

  • Mayer H (1981) Mediterra-montage Tannen-Arten und ihre Bedeutung für Anbauversuche in Mitteleuropa. Cbl Ges Forstw 98:223–241

    Google Scholar 

  • Mergen F, Burley J, Simpson BA (1964) Artificial hybridization in Abies. Der Züchter 34:242–251

    Google Scholar 

  • Mitsopoulos DJ, Panetsos CP (1987) Origin of variation of fir forests in Greece. Silvae Genet 36:1–15

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acid Res 8:4231–4235

    Article  Google Scholar 

  • Němec B et al (1962) Botanical microtechnique. Nakladatelství ČSAV, Prague [in Czech]

    Google Scholar 

  • Parducci L, Szmidt AE (1999) PCR-RFLP analysis of cpDNA in the genus Abies. Theor Appl Genet 98:802–808

    Article  CAS  Google Scholar 

  • Rehder A (1958) Manual of cultivated trees and shrubs. The Macmillan Company, New York

    Google Scholar 

  • Sargent CS (1898) The silva of North America. Houghton and Mifflin and Co., Boston

    Google Scholar 

  • SAS (2004) SAS/STATR 9.1 User‘s Guide. SAS Institute Inc., Cary, NC

  • Silen RR, Critchfield WB, Franklin JF (1965) Early verification of a hybrid between noble and California red firs. For Sci 11:460–462

    Google Scholar 

  • Tokar F (1973) Evaluation of the exotic firs in Slovakia from the standpoint of their growth and planting possibilities. Acta Musei Silesia Ser Dend 1:51–75 [in Slovak]

    Google Scholar 

  • Vendramin GG, Ziegenhagen B (1997) Characterisation and inheritance of polymorphic plastid microsatellites in Abies. Genome 40:857–864

    Article  PubMed  CAS  Google Scholar 

  • Vidakovic M (1977) Some morphological characteristics of Pinus × nigrosylvis (P. nigra × P. sylvestris). Ann For 8:15–27

    Google Scholar 

  • Wright JW (1957) Cultivated firs in the Philadelphia area. Morris Arb Bull 8:11–18

    Google Scholar 

  • Ziegenhagen B, Scholz F, Madaghiele A, Vendramin GG (1998) Chloroplast microsatellites as markers for paternity analysis in Abies alba. Can J For Res 28:317–321

    Google Scholar 

  • Ziegenhagen B, Fady B, Kuhlenkamp V, Liepelt S (2005) Differentiating groups of Abies species with a simple molecular marker. Silvae Genet 54:123–126

    Google Scholar 

Download references

Acknowledgments

The study was supported financially by the VEGA Grant Agency, project no. 02/0110/13, KONTAKT Grant Agency, project no. ME914 and COST Agency, project COST ACTION FP 1106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Kormutak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kormutak, A., Vooková, B., Čamek, V. et al. Artificial hybridization of some Abies species. Plant Syst Evol 299, 1175–1184 (2013). https://doi.org/10.1007/s00606-013-0787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0787-9

Keywords

Navigation