Skip to main content
Log in

Altingioxylon hainanensis sp. nov.: earliest fossil wood record of the family Altingiaceae in Eastern Asia and its implications for historical biogeography

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

A new species, Altingioxylon hainanensis, is described from the Eocene Changchang Formation of the Changchang Basin on Hainan Island, South China. It is the first record of a fossil wood assigned to Altingiaceae found in China, and the most ancient evidence of wood for this family in eastern Asia. The new species is similar to A. rhodoleioides, known since the Miocene in India and Java Island, and to Altingia hisauchii from the Miocene to Pliocene of Japan. The close resemblance between these species and Liquidambar sp., known from the Middle Miocene of western North America, provides additional evidence for the migration of their ancestors from Asia to North America across the Bering land bridge during the Miocene. Distinctions in ray sizes between the eastern Asian specimens and their contemporaries from Europe to Kazakhstan is suggested as a result of the divergence between the large eastern Asian clade and the North American–west Asian clade within Altingiaceae during the Eocene–Oligocene. The presence of crystals in ray cells may be considered an ancestral condition that persists in the eastern Asian lineages up to the extant Altingia and Semiliquidambar, but which was lost in other Altingiaceae in the course of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal A (1991) Occurrence of Altingia and Bauhinia in the Neyveli Lignite (Miocene), India. J Indian Bot Soc 70:119–122

    Google Scholar 

  • Angiosperm Phylogeny Group (APG) (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants AGPII. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Carlquist S (2001) Comparative wood anatomy, 2nd edn. Springer, Berlin and Heidelberg

    Google Scholar 

  • Chase MK, Soltis DE, Olmstead RG, Morgan D, Les DH, Mischler BR, Duvall MR, Price RA, Hillis HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnie GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Equiarte LE, Golenberg LE, Learn GH, Graham Jr, SW Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580

    Article  Google Scholar 

  • Choi S-K, Kim K, Jeong E-K, Terada K, Suzuki M, Uematsu H (2010) Fossil woods from the Miocene in the Yamagata Prefecture, Japan. IAWA J 31(1):95–117

    Google Scholar 

  • Deng L, Baas P (1990) Wood anatomy of trees and shrubs from China II. Theaceae. IAWA Bull 11:337–378

    Google Scholar 

  • Deng L, Baas P (1991) The wood anatomy of the Theaceae. IAWA Bull 12:333–353

    Google Scholar 

  • Endo S, Morita H (1932) Notes on the genera Comptoniphyllum and Liquidambar. Sci Rep Tohoku Imp Univ Ser 2(15):41–53

    Google Scholar 

  • Ferguson DK (1989) A survey of the Liquidambaroideae (Hamamelidaceae) with a view to elucidating its fossil record. In: Crane PR, Blackmore S (eds) Evolution, systematics, and fossil history of the Hamamelidae. Systematics association special volume no 40A, vol 1. Clarendon, Oxford, pp 249–272

    Google Scholar 

  • Friis EM (1985) Angiosperm fruits and seeds from the middle Miocene of Jutland (Denmark). Det Kongelige Danske Videnskabernes Selskab. Biol Skrifter 24(3):1–185

    Google Scholar 

  • Gottwald H (1992) Hölzer aus marinen Sanden des Oberen Eozän von Helmstedt (Niedersachsen). Palaeontographica B 225:27–103

    Google Scholar 

  • Grambast-Fessard N (1969) Contribution a l’étude des flores Tertiaires des régions provençales et alpines: V Deux bois de dicotyledones a caracteres primitifs du Miocene superieur de Castellane. Naturalia Monspel Sér Bot 20:105–118

    Google Scholar 

  • Greguss P (1969) Tertiary angiosperm woods in Hungary. Akademiái Kiadó, Budapest

    Google Scholar 

  • Herendeen PS, Magallon-Puebla S, Lupia R, Crane PR, Kobylinska J (1999) A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of central Georgia, USA. Ann Missouri Bot Gard 86:407–471

    Article  Google Scholar 

  • Huang G (1986) Comparative anatomical studies on the woods of Hamamelidaceae in China. Acta Sci Nat Univ Sunyatseni 1:22–28

    Google Scholar 

  • Huzioka K, Uemura K (1979) The Comptonia-Liquidambar forest during middle Miocene Daijima age in Japan. Report Res Inst Underground Resources, Mining College, Akita University 45:37–50

    Google Scholar 

  • IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bull 10:219–332

    Google Scholar 

  • Ickert-Bond SM, Wen J (2006) Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Mol Phylog Evol 39:512–528

    Article  CAS  Google Scholar 

  • Ickert-Bond SM, Pigg KB, Wen J (2005) Comparative infructescence morphology in Liquidambar (Altingiaceae) and its evolutionary significance. Am J Bot 92:1234–1255

    Article  PubMed  Google Scholar 

  • Imanadei S, Imanadei E (1998) Liquidambaroxylon pravalense n sp. in the pyrrhoclastics of Prăvăleni, Metalliferous Mts. Acta Hort Bot Bucuresti 27:223–232

    Google Scholar 

  • InsideWood (2004–2011) NC State University, Raleigh. http://insidewood.lib.ncsu.edu/search. Accessed 7 Apr 2011

  • Jarmolenko AV (1941) The fossil woods of the Maikop series from the southwestern Transcaucasia. Trudy Bot Inst Akad Nauk SSSR Ser 1(5):7–34

    Google Scholar 

  • Kramer K (1974) Die Tertiären Hölzer Südost-Asiens (Unter Ausschluss Der Dipterocarpaceae). 1. Teil. Palaeontographica Abt B 144:45–181

    Google Scholar 

  • Krassilov VA (1976) The Tsagayan flora of the Amur region. Nauka, Moscow (in Russian)

    Google Scholar 

  • Kräusel R (1939) Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. IV. Die fossilen Floren Ägyptens. Abh Bayer Akad Wiss, Math-naturwiss Abt 47: 1–140

  • Lacey WS (1963) Palaeobotany technique. In: Carthey JD, Duddington CL (eds) Viewpoints in biology 2. Butterworths, London, pp 202–243

    Google Scholar 

  • Lei YZ, Zhang QR, He W, Cao XP (1992) The tertiary. In: Wang XF (ed) Geology of Hainan Island I. Stratigraphy and Palaeontology. Geological Publishing House, Beijing, pp 218–266 (in Chinese)

  • Li C-Y, Wang C-M, Hsiao J-Y, Yang C-H (2003) Two fossil dicotyledonous woods from the Kungkuan Tuff (Early Miocene), Northern Taiwan. Coll Res 16:71–78

    CAS  Google Scholar 

  • MacGinitie HD (1941) A Middle Eocene flora from the Central Sierra Nevada, vol 584. Carnegie Institution, Washington, DC, pp 1–178

    Google Scholar 

  • Magallón S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Ann Missouri Bot Gard 86:297–372

    Article  Google Scholar 

  • Mai DH (1968) Zwei ausgestorbene Gattungen im Tertiar Europas und ihre florengeschichtliche Bedeutung. Palaeontographica 123B:184–199

    Google Scholar 

  • Manchester SR (1999) Biogeographical relationships of North American Tertiary floras. Ann Missouri Bot Gard 86:472–522

    Article  Google Scholar 

  • Martinetto E (1998) East Asian elements in the Plio-Pleistocene floras of Italy. In: Zhang A-L, Wu SG et al (eds) Floristic characteristics and diversity of East Asian Plants. China Higher Education, Beijing and Springer-Verlag, New York, pp 71–87

    Google Scholar 

  • Maslova NP (1995) Liquidambar L. from the Cenozoic eastern Asia. Paleont J 29 (1A):145–158

    Google Scholar 

  • Maslova NP, Krassilov VA (1997) New hamamelid infructescences from the Paleocene of western Kamchatka, Russia. Rev Palaeobot Palyn 97:67–78

    Article  Google Scholar 

  • Melchior RC (1998) Paleobotany of the Williamsburg Formation (Paleocene) at the Santee Rediversion site, Berkeley County, South Carolina. In: Sanders AE (ed) Paleobiology of the Williamsburg Formation (Black Mingo Group; Paleocene) of South Carolina, USA. Trans Am Phil Soc 4(4):49–121

    Article  Google Scholar 

  • Metcalfe CR, Chalk L (1950) Anatomy of the dicotyledons, vols 1, 2. Clarendon, Oxford

    Google Scholar 

  • Pigg KB, Ickert-Bond SM, Wen J (2004) Anatomically preserved Liquidambar (Altingiaceae) from the middle Miocene of Yakima Canyon, Washington State, USA, and its biogeographic implications. Am J Bot 91(3):499–509

    Article  PubMed  Google Scholar 

  • Prakash U, Barghoorn ES (1961) Miocene fossil woods from the Columbia basalts of Central Washington. J Arnold Arb 42:165–203

    Google Scholar 

  • Prakash U, Březinová D, Bůžek Ĉ (1971) Fossil woods from the Doupovské hory and Ĉeské středohoří mountains in North Bohemia. Palaeontographica B 133:103–128

    Google Scholar 

  • Roy SK, Stewart WN (1971) Oligocene woods from the Cypress Hills Formation in Saskatchewan, Canada. Canadian J Bot 49:1867–1877

    Article  Google Scholar 

  • Sakala J, Privé-Gill C (2004) Oligocene angiosperm woods from northwestern Bohemia, Czech Republic. IAWA J 25(3):369–380

    Google Scholar 

  • Shilkina IA (1962) Fossil wood of Liquidambar from Oligocene deposits of Kazakhstan. Dokl Akad Nauk SSSR 145(2):425–429

    Google Scholar 

  • Skvortsova NT (1975) Comparative morphological studies on representatives of the family Hamamelidaceae and their phylogenetic relationships. In: Budantsev LJ (ed) Problems of comparative morphology of the seed plants. Leningrad, Nauka, pp 7–24 (in Russian)

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach TD, Zanis M, Savolaninen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Suzuki K (1961) The important and characteristic Pliocene and Miocene species of plants from the southern parts of the Tohoku District, Japan. Sci Rep Fac Arts Sci Fukushima Univ 10:1–95

    Google Scholar 

  • Suzuki M, Hiraya C (1989) Fossil wood flora from the pumice tuff of Yanagida Formation (Lower Miocene) at Mawaki, Noto Peninsula. Ann. Sci. Kanazawa Univ 26:47–75

    Google Scholar 

  • Suzuki M, Terada K (1996) Fossil wood from the lower Miocene Yanagida Formation, Noto Peninsula, central Japan. IAWA J 17:365–392

    Google Scholar 

  • Suzuki M, Watari S (1994) Fossil wood flora of the early Miocene Nawamata Formation of Monzen, Noto Peninsula, central Japan. J Plant Res 107:63–76

    Article  Google Scholar 

  • Uemura K (1983) Late Neogene Liquidambar (Hamamelidaceae) from the southern part of northeast Honshu, Japan. Mem Natl Sci Mus Tokyo 16:25–36

    Google Scholar 

  • Van der Burgh J (1973) Hölzer der niederrheinischen Braunkohlenformation, 2. Hölzer der Braunkohlengruben “Maria Theresia” zu Herzogenrath, “Zukunft West” zu Eschweiler und “Victor” (Zulpich Mitte) zu Zulpich. Nebst einer systematisch-anatomischen Bearbeitung der Gattung Pinus L. Rev Paleobot Palyn 15:73–275

    Article  Google Scholar 

  • Watari S (1943) Studies on the fossil woods from the Tertiary of Japan IV. A new silicified wood of the Ternstroemiaceae from the Pliocene of Yokohama City. Jap J Bot 13:261–267

    Google Scholar 

  • Watari S (1952) Dicotyledonous woods from the Miocene along the Japan-Sea of Honsyu. J Fac Sci Univ Tokyo Sect III (Botany) 6:97–134

    Google Scholar 

  • Wheeler EA, Dillhoff TA (2009) The middle Miocene wood flora of Vantage, Washington, USA. IAWA J 7:101

  • Wheeler EA, Lee SJ, Baas P (2010) Wood anatomy of the Altingiaceae and Hamamelidaceae. IAWA J 31(4):399–423

    Google Scholar 

  • Wolfe JA (1973) Fossil forms of the Amentiferae. Brittonia 25:334–355

    Article  Google Scholar 

  • Wu W, Zhou R, Huang Y, Boufford DE, Shi S (2010) Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia. J Plant Res 123:231–239

    Article  PubMed  CAS  Google Scholar 

  • Yao YF, Bera S, Ferguson DK, Mosbrugger V, Paudayal KN, Jin JH, Li CS (2009) Reconstruction of paleovegetation and paleoclimate in the early and middle Eocene, Hainan Island, China. Clim Change 92:169–189

    Article  Google Scholar 

  • Zhou ZW, Crepet WL, Nixon KC (2001) The earliest fossil record of the Hamamelidaceae: Late Cretaceous (Turonian) inflorescences and fruits of Altingioideae. Am J Bot 88:753–766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (NSFC, grant nos. 40972011 and 31070200), the National Basic Research Program of China (973 Program) (grant no. 2012CB822003), the joint project NSFC and the Russian Foundation of Basic Research (grant nos. 41111120083 and 11-04-91175), the Key project of the Sun Yat-sen University for inviting foreign teachers, the Guangdong Provincial Natural Science Foundation of China (grant no. 10151027501000020), the Ministry of Science and Education of Russian Federation (contract no. 16.518.11.7071), and the Open Project of Guangdong Key Laboratory of Plant Resources (grant no. plant01k01). We are grateful to graduate students of Sun Yat-sen University for collaboration in the fieldwork on Hainan Island. We also thank Ms. Margaret Joyner, University of Florida, for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oskolski, A.A., Kodrul, T.M. & Jin, J. Altingioxylon hainanensis sp. nov.: earliest fossil wood record of the family Altingiaceae in Eastern Asia and its implications for historical biogeography. Plant Syst Evol 298, 661–669 (2012). https://doi.org/10.1007/s00606-011-0575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0575-3

Keywords

Navigation