Skip to main content
Log in

Phylogenetic models and model selection for noncoding DNA

  • Review
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Awareness of the complex structure and evolutionary dynamics of noncoding DNA has improved both noncoding sequence alignment and the use of microstructural changes as characters in phylogenetic analysis. The next step is to consider improvements in the use and selection of phylogenetic models for noncoding sequence data. Models of character evolution are central to phylogeny estimation, but the use of an inadequate model can mislead topology selection and branch length estimations. This is particularly likely when sequence divergence is either limited (nearly invariable, as in population-level or species-level studies) or extreme (nearly saturated, as in deep-level studies that focus on conserved secondary structures). Noncoding data sets are often at these extremes, and they can be particularly awkward for model definition and model selection. This paper introduces the goals of model use in phylogenetics and identifies ten issues that arise from the application of models to noncoding sequence data. It is concluded that most of these issues derive from small data set sizes, very low or very high sequence variability, limitations of current phylogenetic models, and possibly character definition and nonindependence. Recommendations are made that should help to improve alignment, character quality, model selection, and phylogeny estimation based on noncoding sequence data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogenet Evol 29:417–434

    CAS  PubMed  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277

    Google Scholar 

  • Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Noncoding plastid trnT–trnF sequences reveal a well-resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576

    CAS  PubMed  Google Scholar 

  • Borsch T, Hilu KW, Wiersema JH, Löhne C, Barthlott W, Wilde V (2007) Phylogeny of Nymphaea (Nymphaeaceae): evidence from substitutions and microstructural changes in the chloroplast trnT–trnF region. Int J Pl Sci 168:639–671

    CAS  Google Scholar 

  • Brinkmann H, Van der Giezen M, Zhou Y, de Raucourt GP, Philippe H (2005) An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol 54:743–757

    PubMed  Google Scholar 

  • Brown JM, Lemmon AR (2007) The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst Biol 56:643–655

    PubMed  Google Scholar 

  • Buckley TR (2002) Model misspecification and probabilistic tests of topology: evidence from empirical data sets. Syst Biol 51:509–523

    PubMed  Google Scholar 

  • Buckley TR, Cunningham CW (2002) The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support. Molec Biol Evol 19:394–405

    CAS  PubMed  Google Scholar 

  • Buckley TR, Simon C, Chambers GK (2001a) Exploring among-site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support. Syst Biol 50:67–86

    CAS  PubMed  Google Scholar 

  • Buckley TR, Simon C, Shimodaira H, Chambers GK (2001b) Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (Maoricicada) using multiple-comparison tests of tree topology. Molec Biol Evol 18:223–234

    CAS  PubMed  Google Scholar 

  • Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Collins TM, Wimberger PH, Naylor GJP (1994) Compositional bias, character-state bias, and character-state reconstruction using parsimony. Syst Biol 43:482–496

    Google Scholar 

  • Cummings MP, Nugent JM, Olmstead RG, Palmer JD (2003) Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Curr Genet 43:131–138

    CAS  PubMed  Google Scholar 

  • Cunningham CW, Zhu H, Hillis DM (1998) Best-fit maximum-likelihood models for phylogenetic inference: empirical tests with known phylogenies. Evolution 52:978–987

    Google Scholar 

  • de Pamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339

    CAS  Google Scholar 

  • Dixon MT, Hillis DM (1993) Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Molec Biol Evol 10:256–267

    CAS  PubMed  Google Scholar 

  • Drábkova L, Kirschner J, Vlcek C, Pacek V (2004) TrnL–trnF intergenic spacer and trnL intron define major clades within Luzula and Juncus (Juncaceae): importance of structural mutations. J Molec Evol 59:1–10

    PubMed  Google Scholar 

  • Dumolin-Lapègue S, Pemonge M-H, Petit RJ (1998) Association between chloroplast and mitochondrial lineages in oaks. Molec Biol Evol 15:1321–1331

    PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer, Sunderland

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Galtier N (2001) Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol Biol Evol 18:866–873

    CAS  PubMed  Google Scholar 

  • Goldman N (1993) Statistical tests of models of DNA substitution. J Molec Evol 36:182–198

    CAS  PubMed  Google Scholar 

  • Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma DP (1993) Evolution of a non-coding region of the chloroplast genome. Molec Phylogenet Evol 2:52–64

    CAS  PubMed  Google Scholar 

  • Graham SW, Olmstead RG (2000) Evolutionary significance of an unusual chloroplast DNA inversion found in two basal angiosperm lineages. Curr Genet 37:183–188

    CAS  PubMed  Google Scholar 

  • Graham SW, Reeves PA, Burns ACE, Olmstead RG (2000) Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int J Pl Sci 161:S83–S96

    CAS  Google Scholar 

  • Hamilton MB, Braverman JM, Soria-Hernanz DF (2003) Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in the New World species of Lecythidaceae. Molec Biol Evol 20:1710–1721

    CAS  PubMed  Google Scholar 

  • Holland BR, Penny D, Hendy MD (2003) Outgroup misplacement and phylogenetic inaccuracy under a molecular clock—a simulation study. Syst Biol 52:229–238

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Neilsen R (1999) Effect of nonindependent substitution on phylogenetic accuracy. Syst Biol 48:317–328

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227–232

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 53:904–913

    PubMed  Google Scholar 

  • Ingvarsson PK, Ribstein S, Taylor DR (2003) Molecular evolution of insertions and deletion in the chloroplast genome of Silene. Molec Biol Evol 20:1737–1740

    CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–123

    Google Scholar 

  • Kelchner SA (2000) The evolution of noncoding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard 87:482–498

    Google Scholar 

  • Kelchner SA (2002) Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. Amer J Bot 89:1651–1669

    CAS  Google Scholar 

  • Kelchner SA (2003) Phylogenetic structure, biogeography, and evolution of Myoporaceae. The Australian National University, Canberra

    Google Scholar 

  • Kelchner SA, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Molec Phylogenet Evol 8:385–397

    CAS  PubMed  Google Scholar 

  • Kelchner SA, Thomas MA (2007) Model use in phylogenetics: nine key questions. Trends Ecol Evol 22:87–94

    PubMed  Google Scholar 

  • Kelchner SA, Wendel JF (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr Genet 30:259–262

    CAS  PubMed  Google Scholar 

  • Kim K-J, Lee H-L (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cells 19:104–113

    CAS  PubMed  Google Scholar 

  • Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139

    CAS  PubMed  Google Scholar 

  • Koch MA, Dobes C, Kiefer C, Schmickl R, Klimes L, Lysak MA (2006) Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Molec Biol Evol 24:63–73

    PubMed  Google Scholar 

  • Kudla J, Albertazzi FJ, Blazevic D, Hermann M, Bock R (2002) Loss of the mitochondrial cox2 intron 1 in a family of monocotyledonous plants and utilization of mitochondrial intron sequences for the construction of a nuclear intron. Molec Genet Genomics 267:223–230

    CAS  Google Scholar 

  • Laroche J, Bousquet J (1999) Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. Molec Biol Evol 16:441–452

    CAS  PubMed  Google Scholar 

  • Lemmon AR, Moriarty EC (2004) The importance of proper model assumption in bayesian phylogenetics. Syst Biol 53:265–277

    PubMed  Google Scholar 

  • Lewis PO (1998) Maximum likelihood as an alternative to parsimony for inferring phylogeny using nucleotide sequence data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Boston, pp 132–163

    Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925

    CAS  PubMed  Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Molec Biol Evol 11:605–612

    CAS  PubMed  Google Scholar 

  • Lockhart P, Novis P, Milligan BG, Riden J, Rambaut A, Larkum T (2006) Heterotachy and tree building: a case study with plastids and eubacteria. Molec Biol Evol 23:40–45

    CAS  PubMed  Google Scholar 

  • Löhne C, Borsch T (2005) Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Molec Biol Evol 22:317–3332

    PubMed  Google Scholar 

  • Lopez P, Casane D, Philippe H (2002) Heterotachy, and important process in protein evolution. Molec Biol Evol 19:1–7

    CAS  PubMed  Google Scholar 

  • Lutzoni F, Wagner P, Reeb V, Zoller S (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Syst Biol 49:628–651

    CAS  PubMed  Google Scholar 

  • Meimberg H, Thalhammer S, Brachmann A, Heubl G (2006) Comparative analysis of a translocated copy of the trnK intron in carnivorous family Nepenthaceae. Molec Phylogenet Evol 39:478–490

    CAS  PubMed  Google Scholar 

  • Mes THM, Kuperus P, Kirschner J, Stepanek J, Oosterveld P, Storchova H, den Nijs JCM (2000) Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum (Lactuceae: Asteraceae). Genome 43:634–641

    CAS  PubMed  Google Scholar 

  • Miyamoto MM, Fitch WM (1995) Testing species phylogenies and phylogenetic methods with congruence. Syst Biol 44:64–76

    Google Scholar 

  • Morrison DA (2006) Multiple sequence alignment for phylogenetic purposes. Austral Syst Bot 19:479–539

    CAS  Google Scholar 

  • Müller K (2006) Incorporating information from length-mutational events into phylogenetic analysis. Molec Phylogenet Evol 38:667–676

    PubMed  Google Scholar 

  • Müller K, Borsch T (2005a) Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates. Pl Syst Evol 250:39–67

    Google Scholar 

  • Müller K, Borsch T (2005b) Phylogenetics of Amaranthaceae based on matK/trnK sequence data—evidence from parsimony, likelihood, and Bayesian analyses. Ann Missouri Bot Gard 92:66–102

    Google Scholar 

  • Müller K, Borsch T, Hilu KW (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT–F, and rbcL in basal angiosperms. Molec Phylogenet Evol 41:99–117

    PubMed  Google Scholar 

  • Muse SV (1995) Evolutionary analyses of DNA sequences subject to constraints on secondary structure. Genetics 139:1429–1439

    CAS  PubMed  Google Scholar 

  • Naylor GJP, Brown WM (1998) Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst Biol 47:61–76

    CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Neinhuis C, Wanke S, Hilu KW, Müller K, Borsch T (2005) Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trnL–trnF sequences. Pl Syst Evol 250:7–26

    Google Scholar 

  • Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    PubMed  Google Scholar 

  • Ogden TH, Rosenberg MS (2007) How should gaps be treated in parsimony? A comparison of approaches using simulation. Molec Phylogenet Evol 42:817–826

    CAS  PubMed  Google Scholar 

  • Pagel M, Meade A (2004) A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Syst Biol 53:571–581

    PubMed  Google Scholar 

  • Penny D, Hendy MD, Steel MA (1992) Progress with methods for constructing evolutionary trees. Trends Ecol Evol 7:73–79

    Google Scholar 

  • Penny D, McComish BJ, Charleston MA, Hendy MD (2001) Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J Molec Evol 53:711–723

    CAS  PubMed  Google Scholar 

  • Philippe H, Lopez P (2001) On the conservation of protein sequences in evolution. Trends Biochem Sci 26:414–416

    CAS  PubMed  Google Scholar 

  • Phillips MJ, Delsuc F, Penny D (2004) Genome-scale phylogeny and the detection of systematic biases. Molec Biol Evol 21:1455–1458

    CAS  PubMed  Google Scholar 

  • Pirie MD, Vargas MPB, Botermans M, Bakker FT, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL–F region in Annonaceae: implications for plant molecular systematics. Amer J Bot 94:1003–1016

    Google Scholar 

  • Pol D (2004) Empirical problems of the hierarchical likelihood ratio test for model selection. Syst Biol 53:949–962

    PubMed  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) ModelTest: testing the model of DNA substitution. Bioinformatics 14:817–818

    CAS  PubMed  Google Scholar 

  • Pupko T, Huchon D, Cao Y, Okada N, Hasegawa M (2002) Combining multiple data sets in a likelihood analysis: which models are the best? Molec Biol Evol 19:2294–2307

    CAS  PubMed  Google Scholar 

  • Quandt D, Stech M (2004) Molecular evolution of the trnT(UGU)–trnF(GAA) region in bryophytes. Pl Biol 6:545–554

    CAS  Google Scholar 

  • Quandt D, Stech M (2005) Molecular evolution of the trnL-UAA intron in bryophytes. Molec Phylogenet Evol 36:429–443

    CAS  PubMed  Google Scholar 

  • Quandt D, Müller K, Huttunen S (2003) Characterization of the chloroplast DNA psbT–H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. Pl Biol 5:400–410

    CAS  Google Scholar 

  • Quandt D, Müller K, Stech M, Frahm J-P, Frey W, Hilu KW, Borsch T (2004) Molecular evolution of the chloroplast trnL–F region in land plants. Monogr Syst Bot Missouri Bot Gard 98:13–37

    Google Scholar 

  • Rodríguez F, Oliver JL, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    PubMed  Google Scholar 

  • Rodríguez-Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H (2007) Detecting and overcoming systematic error in genome-scale phylogenies. Syst Biol 56:389–399

    PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  • Sanderson MJ (1995) Objections to bootstrapping phylogenies: a critique. Syst Biol 44:299–320

    Google Scholar 

  • Sanderson MJ, Kim J (2000) Parametric phylogenetics? Syst Biol 49:817–829

    CAS  PubMed  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer J Bot 84:1120–1136

    CAS  Google Scholar 

  • Schöniger M, von Haeseler A (1994) A stochastic model for the evolution of autocorrelated DNA sequences. Molec Phylogenet Evol 3:240–247

    PubMed  Google Scholar 

  • Shahmuradov IA, Akbarova YY, Solovyev VV, Aliyev JA (2003) Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Pl Molec Biol 52:923–934

    CAS  Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molec Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    CAS  PubMed  Google Scholar 

  • Steel M, Huson D, Lockhart PJ (2000) Invariable sites models and their use in phylogeny reconstruction. Syst Biol 49:225–232

    CAS  PubMed  Google Scholar 

  • Stefanovic S, Rice D, Palmer JD (2004) Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evol Biol 4:35–54

    PubMed  Google Scholar 

  • Sullivan J, Joyce P (2005) Model selection in phylogenetics. Annual Rev Ecol Evol Syst 36:445–466

    Google Scholar 

  • Sullivan J, Swofford DL (2001) Should we use model-based methods for phylogenetic inference when we know that assumptions about among-site rate variation and nucleotide substitution patterns are violated? Syst Biol 50:723–729

    CAS  PubMed  Google Scholar 

  • Sullivan J, Holsinger KE, Simon C (1995) Among-site rate variation and phylogenetic analysis of 12S rRNA in Sigmodontine rodents. Molec Biol Evol 12:988–1001

    CAS  PubMed  Google Scholar 

  • Sullivan J, Arellano E, Rogers DS (2000) Comparative phylogeography of Mesoamerican highland rodents: concerted versus independent response to climatic fluctuations. Amer Naturalist 155:755–768

    Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer, Sunderland

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable B (eds) Molecular systematics. Sinauer, Sunderland, pp 407–514

    Google Scholar 

  • Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS (2001) Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol 50:525–539

    CAS  PubMed  Google Scholar 

  • Tillier ERM, Collins RA (1995) Neighbor joining and maximum likelihood with RNA sequences: addressing the interdependence of sites. Molec Biol Evol 12:7–15

    CAS  Google Scholar 

  • van Ham RCHJ, t’Hart H, Mes THM, Sandbrink JM (1994) Molecular evolution of non-coding regions of the chloroplast genome in the Crassulaceae and related species. Curr Genet 25:558–566

    PubMed  Google Scholar 

  • Vijverberg K, Bachmann K (1999) Molecular evolution of a tandemly repeated trnF (GAA) gene in the chloroplast genome of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analysis. Molec Biol Evol 16:1329–1340

    CAS  PubMed  Google Scholar 

  • Waddell PJ (1995) Statistical methods of phylogenetic analysis, including Hadamard conjugations, LogDet transforms, and maximum likelihood. Massey University, Palmerston North, New Zealand

    Google Scholar 

  • Wakeley J (1994) Substitution-rate variation among sites and the estimation of transition bias. Molec Biol Evol 11:436–442

    CAS  PubMed  Google Scholar 

  • Wakeley J (1996) The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol Evol 11:158–163

    Google Scholar 

  • Wanke S, Jaramillo MA, Borsch T, Samain M-S, Quandt D, Neinhuis C (2007) Evolution of Piperales—matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Molec Phylogenet Evol 42:477–497

    CAS  PubMed  Google Scholar 

  • Whelan S, Lio P, Goldman N (2001) Molecular phylogenetics: state of the art methods for looking into the past. Trends Genet 17:262–272

    CAS  PubMed  Google Scholar 

  • Wilgenbusch J, de Queiroz K (2000) Phylogenetic relationships among the Phrynosomatid sand lizards inferred from mitochondrial DNA sequences generated by heterogeneous evolutionary processes. Syst Biol 49:592–612

    CAS  PubMed  Google Scholar 

  • Wolfe AD, Randle CP (2004) Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Syst Bot 29:1011–1020

    Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829

    CAS  PubMed  Google Scholar 

  • Won H, Renner SS (2005) The chloroplast trnT–trnF region in the seed plant lineage Gnetales. J Molec Evol 61:425–436

    CAS  PubMed  Google Scholar 

  • Worberg A, Quandt D, Barniske A-M, Löhne C, Hilu KW, Borsch T (2007) Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. Organisms Diver Evol 7:55–77

    Google Scholar 

  • Yang Z (1995) A space-time process model for the evolution of DNA sequences. Genetics 139:993–1005

    CAS  PubMed  Google Scholar 

  • Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372

    Google Scholar 

Download references

Acknowledgments

Financial support during the development of this article was provided by National Science Foundation award DEB-0515828 to S.A. Kelchner. The author thanks Sean Graham for his careful comments and prompting during the formation of the manuscript, Amanda Fisher and Chang Liu for their fine-tuning of the text, an anonymous reviewer for insightful suggestions that clarified several of the issues discussed, and Thomas Borsch, Dietmar Quandt and the German Science Foundation for their kind invitation to present this topic at the 17th International Symposium on Biodiversity and Evolutionary Biology in Bonn, Germany (September 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scot A. Kelchner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelchner, S.A. Phylogenetic models and model selection for noncoding DNA. Plant Syst Evol 282, 109–126 (2009). https://doi.org/10.1007/s00606-008-0071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0071-6

Keywords

Navigation