Abstract
In this paper, we deal with the Nagata ring R(n) in case R is obtained by a (T, I, D) construction. We characterize when R(n) is a strong S-domain and catenarian. This study allows us to provide several interesting applications and examples.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ameziane S., Elkhayari Z., Yengui I.: About the spectrum of the rings R(n) and R〈n〉. Commun. Algebra 31(3), 1047–1058 (2003)
Anderson D.F., Bouvier A., Dobbs D.E., Fontana M., Kabbaj S.: On Jaffard domains. Expo. Math. 5, 145–175 (1988)
Anderson D.F., Dobbs D.E., Kabbaj S., Mullay S.B.: Universally catenarian domains of D + M type. Proc. Am. Math. Soc. 104(2), 378–384 (1988)
Ayache A., Cahen P.J., Echi O.: Valuative heights and infinite Nagata rings. Commun. Algebra 23(5), 1913–1926 (1995)
Ayache A., Cahen P.J., Echi O.: Anneaux quasi-prüfériens et P-anneaux. Boll. Un. Mat. Ital. B 10(7), 1–24 (1996)
Ayache A., Jarboui N.: On questions related to stably strong S-domains. J. Algebra 291, 164–170 (2005)
Ben Nasr M., Jarboui N.: A counterexample for a conjecture about the catenarity of polynomial rings. J. Algebra 248, 785–789 (2002)
Bouvier A., Dobbs D.E., Fontana M.: Catenarian integral domains. Adv. Math. 72, 211–238 (1988)
Cahen P.J.: Couples d’anneaux partageant un idéal. Arch. Math. 51, 505–514 (1988)
Cahen P.J.: Construction (B, I, D) et anneaux localement ou residuellement de Jaffard. Arch. Math. 54(2), 125–141 (1990)
Cahen, P.J., Elkhayyari, Z., Kabbaj, S.: Krull and valuative dimension of the Serre conjecture ring R〈n〉. In: Lecture Notes in Pure and Applied Mathematics, vol. 185, pp. 173–180. Dekker, New York (1997)
Fontana M., Izelgue L., Kabbaj S.: Sur quelques propriétés des sous-anneaux de la forme D + I d’un anneau intégre. Commun. Algebra 23(11), 4189–4210 (1995)
Gilmer R.: Multiplicative Ideal Theory. Dekker, New York (1972)
Hedstrom J.R., Houston E.G.: Pseudo-valuation domains. Pac. J. Math. 75, 137–147 (1978)
Jaffard, P.: Théorie de la dimension dans les anneaux de polynômes. Mem. Sc. Math, 146. Gauthier-Villars, Paris (1960)
Jarboui N., Jerbi A.: Pullbacks and universal catenarity. Publ. Math. 52, 365–375 (2008)
Kabbaj S.: La formule de la dimension pour les S-domaines forts universels. Boll. Un. Mat. Ital. D 5(6), 145–161 (1986)
Kabbaj S.: Sur les S-domaines forts de Kaplansky. J. Algebra 137(2), 400–414 (1991)
Kaplansky I.: Commutative Rings (revised edition). University Press, Chicago (1974)
Malik S., Mott J.L.: Strong S-domains. J. Pure Appl. Algebra 28(3), 249–264 (1983)
Nagata M.: Local Rings. Interscience, New York (1962)
Yengui I.: Two counterexamples about the Nagata and Serre conjecture rings. J. Pure Appl. Algebra 153(2), 191–195 (2000)
Yengui I.: On questions related to saturated chains of primes in polynomial rings. J. Pure Appl. Algebra 178(2), 215–224 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by John S. Wilson.
Rights and permissions
About this article
Cite this article
Nasr, M.B., Jarboui, N. & Zeyeda, N. About the spectrum of Nagata rings. Monatsh Math 167, 257–272 (2012). https://doi.org/10.1007/s00605-011-0325-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00605-011-0325-1
Keywords
- Integral domain
- Prime ideal
- Krull dimension
- Prüfer domain
- Valuation domain
- Pseudo-valuation domain
- Jaffard domain
- Strong S-domain
- Catenarian domain
- Algebraic extension