Skip to main content
Log in

About the spectrum of Nagata rings

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we deal with the Nagata ring R(n) in case R is obtained by a (T, I, D) construction. We characterize when R(n) is a strong S-domain and catenarian. This study allows us to provide several interesting applications and examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ameziane S., Elkhayari Z., Yengui I.: About the spectrum of the rings R(n) and Rn〉. Commun. Algebra 31(3), 1047–1058 (2003)

    Article  MATH  Google Scholar 

  2. Anderson D.F., Bouvier A., Dobbs D.E., Fontana M., Kabbaj S.: On Jaffard domains. Expo. Math. 5, 145–175 (1988)

    MathSciNet  Google Scholar 

  3. Anderson D.F., Dobbs D.E., Kabbaj S., Mullay S.B.: Universally catenarian domains of D + M type. Proc. Am. Math. Soc. 104(2), 378–384 (1988)

    MATH  Google Scholar 

  4. Ayache A., Cahen P.J., Echi O.: Valuative heights and infinite Nagata rings. Commun. Algebra 23(5), 1913–1926 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ayache A., Cahen P.J., Echi O.: Anneaux quasi-prüfériens et P-anneaux. Boll. Un. Mat. Ital. B 10(7), 1–24 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Ayache A., Jarboui N.: On questions related to stably strong S-domains. J. Algebra 291, 164–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Nasr M., Jarboui N.: A counterexample for a conjecture about the catenarity of polynomial rings. J. Algebra 248, 785–789 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouvier A., Dobbs D.E., Fontana M.: Catenarian integral domains. Adv. Math. 72, 211–238 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cahen P.J.: Couples d’anneaux partageant un idéal. Arch. Math. 51, 505–514 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cahen P.J.: Construction (B, I, D) et anneaux localement ou residuellement de Jaffard. Arch. Math. 54(2), 125–141 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cahen, P.J., Elkhayyari, Z., Kabbaj, S.: Krull and valuative dimension of the Serre conjecture ring Rn〉. In: Lecture Notes in Pure and Applied Mathematics, vol. 185, pp. 173–180. Dekker, New York (1997)

  12. Fontana M., Izelgue L., Kabbaj S.: Sur quelques propriétés des sous-anneaux de la forme D + I d’un anneau intégre. Commun. Algebra 23(11), 4189–4210 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilmer R.: Multiplicative Ideal Theory. Dekker, New York (1972)

    MATH  Google Scholar 

  14. Hedstrom J.R., Houston E.G.: Pseudo-valuation domains. Pac. J. Math. 75, 137–147 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Jaffard, P.: Théorie de la dimension dans les anneaux de polynômes. Mem. Sc. Math, 146. Gauthier-Villars, Paris (1960)

  16. Jarboui N., Jerbi A.: Pullbacks and universal catenarity. Publ. Math. 52, 365–375 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Kabbaj S.: La formule de la dimension pour les S-domaines forts universels. Boll. Un. Mat. Ital. D 5(6), 145–161 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Kabbaj S.: Sur les S-domaines forts de Kaplansky. J. Algebra 137(2), 400–414 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaplansky I.: Commutative Rings (revised edition). University Press, Chicago (1974)

    Google Scholar 

  20. Malik S., Mott J.L.: Strong S-domains. J. Pure Appl. Algebra 28(3), 249–264 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagata M.: Local Rings. Interscience, New York (1962)

    MATH  Google Scholar 

  22. Yengui I.: Two counterexamples about the Nagata and Serre conjecture rings. J. Pure Appl. Algebra 153(2), 191–195 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yengui I.: On questions related to saturated chains of primes in polynomial rings. J. Pure Appl. Algebra 178(2), 215–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noômen Jarboui.

Additional information

Communicated by John S. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasr, M.B., Jarboui, N. & Zeyeda, N. About the spectrum of Nagata rings. Monatsh Math 167, 257–272 (2012). https://doi.org/10.1007/s00605-011-0325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-011-0325-1

Keywords

Mathematics Subject Classification (2000)