Skip to main content
Log in

One-step solvent thermal synthesis of 3D networked MOF composites for preparation of an ultrasensitive chemosensor for hydroquinone and catechol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Pharmaceuticals and personal care products (PPCPs) have a significant impact on the environment and human health, due to their sometimes toxic and carcinogenic characteristics. Therefore, an innovative chemosensor was constructed for ultrasensitive determination of two typical PCCPs (hydroquinone (HQ) and catechol (CC)) in several minutes. The homemade chemosensor (UiO-67@GO/MWCNTs) consisted of MOF(UiO-67), graphene oxide (GO), and multi-walled carbon nanotubes (MWCNTs) composites; it was a networked, structurally sparse, porosity-rich, homogeneous octahedral composite, and had ultra-high electrical conductivity, which provided lots of active adsorption sites, promote charge transfer, and enrich lots of molecules to be measured in a few minutes. The prepared electrochemical sensor showed good long-term stability, applicability, reproducibility, and immunity to interference for the determination of HQ and CC, with a wide linear range of response of 5.0 ~ 940 µM for both HQ and CC, and a low limit of detection with satisfactory recoveries. In addition, a new strategy of using MOF composites as the basis for electrochemical determination of organic small molecules was established, and a new platform was constructed for the quantitative determination of organic small molecules in various environmental samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. AbdelHamid A, Elgamouz A, Khanfer M, Kawde A-N (2023) COVID-19 chloroquine drug detection using novel, highly sensitive SnO2-based electrochemical sensor. Arab J Chem 16(5):104674. https://doi.org/10.1016/j.arabjc.2023.104674

    Article  CAS  Google Scholar 

  2. Anil Kumar A, Kumara Swamy BE, Shobha Rani T, Ganesh PS, Paul Raj Y (2019) Voltammetric determination of catechol and hydroquinone at poly(murexide) modified glassy carbon electrode. Mater Sci Eng C 98:746–752. https://doi.org/10.1016/j.msec.2018.12.055

    Article  CAS  Google Scholar 

  3. Huang H, Chen Y, Chen Z, Chen J, Hu Y, Zhu JJ (2021) Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol. J Hazard Mater 416:125895. https://doi.org/10.1016/j.jhazmat.2021.125895

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Yang J, Xu P, Liu H, Zhang L, Zhang S, Tian L (2020) Gold nanoparticles decorated biochar modified electrode for the high-performance simultaneous determination of hydroquinone and catechol. Sens Actuators B 306:127590. https://doi.org/10.1016/j.snb.2019.127590

    Article  CAS  Google Scholar 

  5. Nsanzamahoro S, Mutuyimana FP, Han Y, Ma S, Na M, Liu J, Ma Y, Ren C, Chen H, Chen X (2019) Highly selective and sensitive detection of catechol by one step synthesized highly fluorescent and water-soluble silicon nanoparticles. Sens Actuators B 281:849–856. https://doi.org/10.1016/j.snb.2018.11.016

    Article  CAS  Google Scholar 

  6. Guo J, Wu S, Wang Y, Zhao M (2020) A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sens Actuators B Chem 312. https://doi.org/10.1016/j.snb.2020.128021

  7. Beyeh NK, Kogej M, Åhman A, Rissanen K, Schalley CA (2006) Fliegende Kapseln: massenspektrometrische Detektion von Pyrogallaren- und Resorcinaren-Hexameren. Angew Chem 118(31):5339–5342. https://doi.org/10.1002/ange.200600687

    Article  Google Scholar 

  8. Cao Q, Xiao Y, Liu N, Huang R, Ye C, Huang C, Liu H, Han G, Wu L (2021) Synthesis of Yolk/Shell heterostructures MOF@MOF as biomimetic sensing platform for catechol detection. Sens Actuators B 329. https://doi.org/10.1016/j.snb.2020.129133

  9. Zhao Y, Jiang Y, Mo Y, Zhai Y, Liu J, Strzelecki AC, Guo X, Shan C (2023) Boosting electrochemical catalysis and nonenzymatic sensing toward glucose by single-atom Pt supported on Cu@CuO core-shell nanowires. Small 19(18):e2207240. https://doi.org/10.1002/smll.202207240

    Article  CAS  PubMed  Google Scholar 

  10. Guo H, Wang D, Chen J, Weng W, Huang M, Zheng Z (2016) Simple fabrication of flake-like NH2-MIL-53(Cr) and its application as an electrochemical sensor for the detection of Pb2+. Chem Eng J 289:479–485. https://doi.org/10.1016/j.cej.2015.12.099

    Article  CAS  Google Scholar 

  11. Zhang Y, Li K, Liu Y-Q, Kou X, Gong Y, Bai Y, Chu W (2023) ZIF-67-derived highly dispersed Co3O4 nanoparticles@hollow carbon chamfer cube-reduced graphene oxide for electrochemical detection of dopamine, acetaminophen and xanthine. J Alloy Compd 936:168155. https://doi.org/10.1016/j.jallcom.2022.168155

    Article  CAS  Google Scholar 

  12. Ma L, Zhang X, Ikram M, Ullah M, Wu H, Shi K (2020) Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Chem Eng J 395. https://doi.org/10.1016/j.cej.2020.125216

  13. Daniel M, Mathew G, Anpo M, Neppolian B (2022) MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: an overview. Coord Chem Rev 468:214627. https://doi.org/10.1016/j.ccr.2022.214627

    Article  CAS  Google Scholar 

  14. Liang H, Luo Y, Li Y, Song Y, Wang L (2022) An immunosensor using electroactive COF as signal probe for electrochemical detection of carcinoembryonic antigen. Anal Chem 94(13):5352–5358. https://doi.org/10.1021/acs.analchem.1c05426

    Article  CAS  PubMed  Google Scholar 

  15. Mohan B, Kumari R, Virender, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P (2023) Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. Environ Int 175:107928. https://doi.org/10.1016/j.envint.2023.107928

    Article  CAS  PubMed  Google Scholar 

  16. Zhou M, Tang T, Qin D, Cheng H, Wang X, Chen J, Wågberg T, Hu G (2023) Hematite nanoparticle decorated MIL-100 for the highly selective and sensitive electrochemical detection of trace-level paraquat in milk and honey. Sens Actuators B Chem 376. https://doi.org/10.1016/j.snb.2022.132931

  17. Wang F-F, Liu C, Yang J, Xu H-L, Pei W-Y, Ma J-F (2022) A sulfur-containing capsule-based metal-organic electrochemical sensor for super-sensitive capture and detection of multiple heavy-metal ions. Chem Eng J (Lausanne) 438:135639. https://doi.org/10.1016/j.cej.2022.135639

    Article  CAS  Google Scholar 

  18. Li X, Liu Y, Zhang C, Wen T, Zhuang L, Wang X, Song G, Chen D, Ai Y, Hayat T, Wang X (2018) Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chem Eng J (Lausanne) 336:241–252. https://doi.org/10.1016/j.cej.2017.11.188

    Article  CAS  Google Scholar 

  19. Zhou D-D, Liu Q-Y, Chen M, Cao Y-W, Zhuang L-Y, Yang Z-H, Xu Z (2023) The synthesis, application and mechanism of a novel Zr-based magnetic MOFs adsorption material. J Environ Chem Eng 11(3):109666. https://doi.org/10.1016/j.jece.2023.109666

    Article  CAS  Google Scholar 

  20. Koo W-T, Jang J-S, Kim I-D (2019) Metal-organic frameworks for chemiresistive sensors. Chem 5(8):1938–1963. https://doi.org/10.1016/j.chempr.2019.04.013

    Article  CAS  Google Scholar 

  21. Small LJ, Henkelis SE, Rademacher DX, Schindelholz ME, Krumhansl JL, Vogel DJ, Nenoff TM (2020) Near-zero power MOF-based sensors for NO2 detection. Adv Func Mater 30(50):2006598. https://doi.org/10.1002/adfm.202006598

    Article  CAS  Google Scholar 

  22. Han HS, You J-M, Seol H, Jeong H, Jeon S (2014) Electrochemical sensor for hydroquinone and catechol based on electrochemically reduced GO–terthiophene–CNT. Sens Actuators B Chem 194:460–469. https://doi.org/10.1016/j.snb.2014.01.006

    Article  CAS  Google Scholar 

  23. Wang H, Hu Q, Meng Y, Jin Z, Fang Z, Fu Q, Gao W, Xu L, Song Y, Lu F (2018) Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J Hazard Mater 353:151–157. https://doi.org/10.1016/j.jhazmat.2018.02.029

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Wang Y, Cao Z, Xu J, Hu J, Huang Y, Cui C, Liu H, Wang H (2020) Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation. Chem Eng J 381:122771. https://doi.org/10.1016/j.cej.2019.122771

    Article  CAS  Google Scholar 

  25. Xiao P, Zhu G, Shang X, Hu B, Zhang B, Tang Z, Yang J, Liu J (2022) An Fe-MOF/MXene-based ultra-sensitive electrochemical sensor for arsenic(III) measurement. J Electroanal Chem 916:116382. https://doi.org/10.1016/j.jelechem.2022.116382

    Article  CAS  Google Scholar 

  26. Lu M, Deng Y, Luo Y, Lv J, Li T, Xu J, Chen SW, Wang J (2019) Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal Chem 91(1):888–895. https://doi.org/10.1021/acs.analchem.8b03764

    Article  CAS  PubMed  Google Scholar 

  27. Hira SA, Nallal M, Park KH (2019) Fabrication of PdAg nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol. Sens Actuators B 298. https://doi.org/10.1016/j.snb.2019.126861

  28. Olorunyomi JF, White JF, Gengenbach TR, Caruso RA, Doherty CM (2022) Fabrication of a reusable carbon dot/gold nanoparticle/metal–organic framework film for fluorescence detection of lead ions in water. ACS Appl Mater Interfaces 14(31):35755–35768. https://doi.org/10.1021/acsami.2c09122

    Article  CAS  PubMed  Google Scholar 

  29. Wang S, Guo P, Ma G, Wei J, Wang Z, Cui L, Sun L, Wang A (2020) Three-dimensional hierarchical mesoporous carbon for regenerative electrochemical dopamine sensor. Electrochim Acta 360. https://doi.org/10.1016/j.electacta.2020.137016

  30. Gu C, Wang Q, Zhang L, Yang P, Xie Y, Fei J (2020) Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide @ mesoporous carbon composite. Sens Actuators B 305. https://doi.org/10.1016/j.snb.2019.127478

  31. Zhao Q, Du Q, Yang Y, Zhao Z, Cheng J, Bi F, Shi X, Xu J, Zhang X (2022) Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: Experimental and theoretical insights. Chem Eng J 433. https://doi.org/10.1016/j.cej.2022.134510

  32. Zhou D-D, Liu Q-Y, Chen M, Cao Y-W, Zhuang L-Y, Yang Z-H, Xu Z (2023) The synthesis, application and mechanism of a novel Zr-based magnetic MOFs adsorption material. J Environ Chem Eng 11(3). https://doi.org/10.1016/j.jece.2023.109666

  33. Hobday CL, Marshall RJ, Murphie CF, Sotelo J, Richards T, Allan DR, Duren T, Coudert FX, Forgan RS, Morrison CA, Moggach SA, Bennett TD (2016) A computational and experimental approach linking disorder, high-pressure behavior, and mechanical properties in UiO frameworks. Angew Chem Int Ed Engl 55(7):2401–2405. https://doi.org/10.1002/anie.201509352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang P, Wang X, Zhao J, Zhang Z, Du X, Lu X (2022) Hollow Co-MOF-74 incorporated electrospun nanofiber membranes with hierarchical structures for enhanced removal of polycyclic aromatic hydrocarbons by drain-type adsorption. Chem Eng J 449:137759. https://doi.org/10.1016/j.cej.2022.137759

    Article  CAS  Google Scholar 

  35. Wang Y, Zhao G, Zhang G, Zhang Y, Wang H, Cao W, Li T, Wei Q (2020) An electrochemical aptasensor based on gold-modified MoS2/rGO nanocomposite and gold-palladium-modified Fe-MOFs for sensitive detection of lead ions. Sens Actuators B 319. https://doi.org/10.1016/j.snb.2020.128313

  36. Guo H, Liu B, Pan Z, Sun L, Peng L, Chen Y (2022) Electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode. Colloids Surf A 648:129316. https://doi.org/10.1016/j.colsurfa.2022.129316

    Article  CAS  Google Scholar 

  37. Huang R, Liao D, Chen S, Yu J, Jiang X (2020) A strategy for effective electrochemical detection of hydroquinone and catechol: decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon. Sens Actuators B 320:128386. https://doi.org/10.1016/j.snb.2020.128386

    Article  CAS  Google Scholar 

  38. Chen H, Wu X, Lao C, Li Y, Yuan Q, Gan W (2019) MOF derived porous carbon modified rGO for simultaneous determination of hydroquinone and catechol. J Electroanal Chem 835:254–261. https://doi.org/10.1016/j.jelechem.2019.01.027

    Article  CAS  Google Scholar 

Download references

Funding

This work was generously supported by the National Natural Science Foundation of China (No. 22266031); the National Natural Science Foundation of Gansu Province, China (No. 22JR5RA134); the National Natural Science Foundation Youth Science and Technology Fund Project of Gansu Province, China (No. 23JRRA1472); the Science and Technology Fund Project of Lanzhou, China (No. 2023–3-71, 2023–3-42); the Program for Innovative Research Group of Gansu Province, China (No.1210RJIA001); Industrial Support Plan of Education Department of Gansu Province (No. 2021cyzc-01); and the Funds for Creative Research Groups of Gansu Province (21JR7RA160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2906 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, Y., Ru, J. et al. One-step solvent thermal synthesis of 3D networked MOF composites for preparation of an ultrasensitive chemosensor for hydroquinone and catechol. Microchim Acta 191, 274 (2024). https://doi.org/10.1007/s00604-024-06349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06349-6

Keywords

Navigation