Skip to main content
Log in

Determination of sulfide in complex biofilm matrices using silver-coated, 4-mercaptobenzonitrile-modified gold nanoparticles, encapsulated in ZIF-8 as surface-enhanced Raman scattering nanoprobe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A surface-enhanced Raman scattering nanoprobe has been developed for sulfide detection and applied to  complex bacterial biofilms. The nanoprobe, Au@4-MBN@Ag@ZIF-8, comprised a gold core modified with 4-mercaptobenzonitrile (4-MBN) as signaling source, a layer of silver shell as the sulfide sensitization material, and a zeolitic imidazolate framework-8 (ZIF-8) as surface barrier. ZIF-8, with its high surface area and mesoporous structure, was applied to preconcentrate sulfide around the nanoprobe with its excellent adsorption capacity. Besides, the external wrapping of ZIF-8 can not only prevent the interference of biomolecules, such as proteins, with the Au@4-MBN@Ag assay but also enhance the detection specificity through the sulfide cleavage function towards ZIF-8. These properties are critical for the application of this nanoprobe to complex environmental scenarios. In the presence of sulfide, it was first enriched through adsorption by the outer ZIF-8 layer, then destroyed the barrier layer, and subsequently reacted with the Ag shell, leading to changes in the Raman signal. Through this rational design, the Au@4-MBN@Ag@ZIF-8 nanoprobe exhibited excellent detection sensitivity, with a sulfide detection limit in the nanomolar range and strong linearity in the concentration range  50 nM to 500 μM. Furthermore, the proposed Au@4-MBN@Ag@ZIF-8 nanoprobe was effectively utilized for sulfide detection in intricate biofilm matrices, demonstrating its robust selectivity and reproducibility.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wen H, Yan J, Wu L, Chang X, Ye W, Zhang H, Huang L, Xiao T (2023) Desulfurization of hydrophilic and hydrophobic volatile reduced sulfur with elemental sulfur production in denitrifying bioscrubber. Chemosphere 316:137806–137815

    Article  CAS  PubMed  Google Scholar 

  2. Shao Y, Chen Z, Wu L (2019) Oxidative stress effects of soluble sulfide on human hepatocyte cell line LO2. Int J Environ Res Public Health 16:1–11

    Article  Google Scholar 

  3. Fukuoka H, Andou T, Moriya T, Narita K, Kasahara K, Miura D, Sekiguchi Y, Suzuki S, Nakagawa K, Ozawa M, Ishibe A, Endo I (2021) Sulphur metabolism in colon cancer tissues: a case report and literature review. J Int Med Res 49:1–9

    Article  Google Scholar 

  4. Chen W, Ni D, Rosenkrans ZT, Cao T, Cai W (2019) Smart H2S-triggered/therapeutic system (SHTS)-based nanomedicine, Advanced. Science 6:1901724–1901750

    CAS  Google Scholar 

  5. Zhang Y, Yue T, Gu W, Liu A, Cheng M, Zheng H, Bao D, Li F, Piao JG (2022) pH-responsive hierarchical H(2)S-releasing nano-disinfectant with deep-penetrating and anti-inflammatory properties for synergistically enhanced eradication of bacterial biofilms and wound infection. J Nanobiotechnology 20:55–72

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM (2021) Hydrogen sulfide attenuated sepsis-induced myocardial dysfunction through TLR4 pathway and endoplasmic reticulum stress. Front Physiol 12:653601–653611

    Article  PubMed  PubMed Central  Google Scholar 

  7. Litti L, Trivini S, Ferraro D, Reguera J (2021) 3D printed microfluidic device for magnetic trapping and SERS quantitative evaluation of environmental and biomedical analytes. ACS Appl Mater Interfaces 13:34752–34761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghadiri M, Kariminia HR, Roosta Azad R (2013) Spectrophotometric determination of sulfide based on peroxidase inhibition by detection of purpurogallin formation. Ecotoxicol Environ Saf 91:117–121

    Article  CAS  PubMed  Google Scholar 

  9. El-Maghrabey MH, Watanabe R, Kishikawa N, Kuroda N (2019) Detection of hydrogen sulfide in water samples with 2-(4-hydroxyphenyl)-4,5-di(2-pyridyl)imidazole-copper(II) complex using environmentally green microplate fluorescence assay method. Anal Chim Acta 1057:123–131

    CAS  PubMed  Google Scholar 

  10. Jiang Y, Sun D-W, Pu H, Wei Q (2018) Surface enhanced Raman spectroscopy (SERS): a novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol 75:10–22

    Article  CAS  Google Scholar 

  11. Wang Y, Zhang D, Sun Y, Zeng Y, Qi P (2023) Precise localization and simultaneous bacterial eradication of biofilms based on nanocontainers with successive responsive property toward pH and ATP. ACS Appl Mater Interfaces 15:8424–8435

    Article  CAS  PubMed  Google Scholar 

  12. Buret AG, Allain T, Motta J-P, Wallace JL (2022) Effects of hydrogen sulfide on the microbiome: from toxicity to therapy. Antioxid Redox Signal 36:211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Washio J, Sato T, Koseki T, Takahashi N (2005) Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour. J Med Microbiol 54:889–895

    Article  CAS  PubMed  Google Scholar 

  14. Wang W, Ma P, Song D (2022) Applications of surface-enhanced Raman spectroscopy based on portable Raman spectrometers: a review of recent developments. Luminescence 37:1822–1835

    Article  CAS  PubMed  Google Scholar 

  15. Zhu A, Ali S, Jiao T, Wang Z, Ouyang Q, Chen Q (2023) Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr Rev Food Sci Food Saf 1466-1494

  16. Wang C, Wang C, Li J, Tu Z, Gu B, Wang S (2022) Ultrasensitive and multiplex detection of four pathogenic bacteria on a bi-channel lateral flow immunoassay strip with three-dimensional membrane-like SERS nanostickers. Biosens Bioelectron 214:114525–114534

    Article  CAS  Google Scholar 

  17. Li Y, Xin X, Zhang T, Li W, Li J, Lu R (2021) Raspberry-like polyamide@Ag hybrid nanoarrays with flexible cores and SERS signal enhancement strategy for adenosine detection. Chem Eng J 422:129983–129993

    Article  CAS  Google Scholar 

  18. Yang D, Li H, Li Q, Li K, Xiao F, Yang Y (2022) Highly selective histamine assay via SERS: based on the signal enhancement of carbon dots and the fluorescence quenching of gold nanoparticles. Sens Actuators, B Chem 350:130866–130872

    Article  CAS  Google Scholar 

  19. Huang Y-H, Wei H, Santiago PJ, Thrift WJ, Ragan R, Jiang S (2023) Sensing antibiotics in wastewater using surface-enhanced Raman scattering. Environ Sci Technol 57:4880–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang S, Wang W, Rahman A, Nam W, Zhou W, Vikesland PJ (2022) Highly porous gold supraparticles as surface-enhanced Raman spectroscopy (SERS) substrates for sensitive detection of environmental contaminants. RSC Adv 12:32803–32812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang WS, Wang YN, Xu ZR (2020) High sensitivity and non-background SERS detection of endogenous hydrogen sulfide in living cells using core-shell nanoparticles. Anal Chim Acta 1094:106–112

    Article  CAS  PubMed  Google Scholar 

  22. Fu JH, Zhong Z, Xie D, Guo YJ, Kong DX, Zhao ZX, Zhao ZX, Li M (2020) SERS-active MIL-100(Fe) sensory array for ultrasensitive and multiplex detection of VOCs. Angew Chem Int Ed 59:20489–20498

    Article  CAS  Google Scholar 

  23. Rickard JJS, Di-Pietro V, Smith DJ, Davies DJ, Belli A, Oppenheimer PG (2020) Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy, Nature. Biomed Eng 4:610–623

    CAS  Google Scholar 

  24. Qiao X, Su B, Liu C, Song Q, Luo D, Mo G, Wang T (2017) Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure. Adv Mater 30:1702275–1702282

    Article  Google Scholar 

  25. Hu Y, Liao J, Wang D, Li G (2014) Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal Chem 86:3955–3963

    Article  CAS  PubMed  Google Scholar 

  26. Li D, Cao X, Zhang Q, Ren X, Jiang L, Li D, Deng W, Liu H (2019) Facile in situ synthesis of core–shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons. J Mater Chem A 7:14108–14117

    Article  CAS  Google Scholar 

  27. Kim H, Jang H, Moon J, Byun J, Jeong J, Jung J, Lim EK, Kang T (2019) Metal-organic framework coating for the preservation of silver nanowire surface-enhanced Raman scattering platform. Adv Mater Interfaces 6:1900427-1900435

  28. Yu T-H, Ho C-H, Wu C-Y, Chien C-H, Lin C-H, Lee S (2013) Metal-organic frameworks: a novel SERS substrate. J Raman Spectrosc 44:1506–1511

    Article  CAS  Google Scholar 

  29. Pipelzadeh E, Rudolph V, Hanson G, Noble C, Wang L (2017) Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing. Appl Catal B 218:672–678

    Article  CAS  Google Scholar 

  30. Zhou X, Liu G, Zhang H, Li Y, Cai W (2019) Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment. J Hazard Mater 368:429–435

    Article  CAS  PubMed  Google Scholar 

  31. Lai H, Li G, Xu F, Zhang Z (2020) Metal–organic frameworks: opportunities and challenges for surface-enhanced Raman scattering — a review. J Mater Chem C 8:2952–2963

    Article  CAS  Google Scholar 

  32. Li M, Cushing SK, Zhou G, Wu N (2020) Molecular hot spots in surface-enhanced Raman scattering. Nanoscale 12:22036–22041

    Article  CAS  PubMed  Google Scholar 

  33. Man T, Lai W, Xiao M, Wang X, Chandrasekaran AR, Pei H, Li L (2020) A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosens Bioelectron 147:111742–111771

    Article  CAS  PubMed  Google Scholar 

  34. Taheri M, Tsuzuki T (2021) Photo-accelerated hydrolysis of metal organic framework ZIF-8. ACS Mater Lett 3:255–260

    Article  CAS  Google Scholar 

  35. Yuan A, Hao C, Wu X, Sun M, Qu A, Xu L, Kuang H, Xu C (2020) Chiral Cu(x) OS@ZIF-8 nanostructures for ultrasensitive quantification of hydrogen sulfide in vivo. Adv Mater 32:e1906580

    Article  PubMed  Google Scholar 

  36. Rajendran J (2023) Amperometric determination of salivary thiocyanate using electrochemically fabricated poly (3, 4-ethylenedioxythiophene)/MXene hybrid film. J Hazard Mater 449:130979

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (grant numbers: 42376208 and 41922040) and 0)the Natural Science Foundation Project of Shandong Province (No.: ZR2020ME009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Qi, Ping Zhao or Peng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 756 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Qi, P., Zhang, D. et al. Determination of sulfide in complex biofilm matrices using silver-coated, 4-mercaptobenzonitrile-modified gold nanoparticles, encapsulated in ZIF-8 as surface-enhanced Raman scattering nanoprobe. Microchim Acta 190, 475 (2023). https://doi.org/10.1007/s00604-023-06071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06071-9

Keywords

Navigation