Skip to main content

Advertisement

Log in

One-pot wet-chemical fabrication of 3D urchin-like core-shell Au@PdCu nanocrystals for electrochemical breast cancer immunoassay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbohydrate antigen 15-3 (CA15-3) is an important biomarker for early diagnosis of breast cancer. Herein, a label-free electrochemical immunosensor was built based on three-dimensional (3D) urchin-like core-shell Au@PdCu nanocrystals (labeled Au@PdCu NCs) for highly sensitive detection of CA15-3, where K3[Fe(CN)6] behaved as an electroactive probe. The Au@PdCu NCs were synthesized by a simple one-pot wet-chemical approach and the morphology, structures, and electrocatalytic property were investigated by several techniques. The Au@PdCu NCs prepared worked as electrode material to anchor more antibodies and as signal magnification material by virtue of its exceptional catalytic property. The developed biosensor exhibited a wide linear detection range from 0.1 to 300 U mL−1 and a low limit of detection (0.011 U mL−1, S/N = 3) for determination of CA15-3 under the optimal conditions. The established biosensing platform exhibits some insights for detecting other tumor biomarkers in clinical assays and early diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang X, Wang H, Yuan R, Chai Y (2015) Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosens Bioelectron 63:33–38

    CAS  PubMed  Google Scholar 

  2. Lakhera P, Chaudhary V, Jha A, Singh R, Kush P, Kumar P (2022) Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers. Mater Today Chem 26:101129

    CAS  Google Scholar 

  3. Wu Y, Chen X, Wang X, Yang M, Xu F, Hou C, Huo D (2021) A fluorescent biosensor based on prismatic hollow metal-polydopamine frameworks and 6-carboxyfluorescein (FAM)-labeled protein aptamer for CA15-3 detection. Sens Actuators B Chem 329:129249

    CAS  Google Scholar 

  4. Lin Z, Zheng S, Xie J, Zhou R, Chen Y, Gao W (2023) A sensitive electrochemiluminescence immunosensor for the detection of CA15-3 based on CeO2/Pt/rGO as a novel co-reaction accelerator. Talanta 253:123912

    CAS  PubMed  Google Scholar 

  5. Park YM, Kim SJ, Kim K, Han YD, Yang SS, Yoon HC (2013) Lectin-based optical sensing for quantitative analysis of cancer antigen CA15-3 as a breast cancer marker. Sens Actuators B Chem 186:571–579

    CAS  Google Scholar 

  6. Rodrigues Ferreira S, Nahmias C (2022) Predictive biomarkers for personalized medicine in breast cancer. Cancer Lett 545:215828

    CAS  PubMed  Google Scholar 

  7. Kazarian A, Blyuss O, Metodieva G, Gentry Maharaj A, Ryan A, Kiseleva EM, Prytomanova OM, Jacobs IJ, Widschwendter M, Menon U, Timms JF (2017) Testing breast cancer serum biomarkers for early detection and prognosis in pre-diagnosis samples. Br J Cancer 116:501–508

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi M, Zhao S, Huang Y, Liu YM, Ye F (2011) Microchip fluorescence-enhanced immunoaasay for simultaneous quantification of multiple tumor markers. J Chromatogr B 879:2840–2844

    CAS  Google Scholar 

  9. Zhang C, Zhang D, Ma Z, Han H (2019) Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15-3. Biosens Bioelectron 137:1–7

    PubMed  Google Scholar 

  10. Yang Z, Lu M, Li J, Tan Z, Dai H, Jiao Xa HX (2017) Nitrogen-doped graphene-chitosan matrix based efficient chemiluminescent immunosensor for detection of chicken interleukin-4. Biosens Bioelectron 89:558–564

    CAS  PubMed  Google Scholar 

  11. Cao J, Ouyang P, Yu S, Shi F, Ren C, Wang C, Shen M, Yang Z (2021) Hedgehog-like Bi2S3 nanostructures: a novel composite soft template route to the synthesis and sensitive electrochemical immunoassay of the liver cancer biomarker. Chem Commun 57:1766–1769

    CAS  Google Scholar 

  12. Lan Q, Shen H, Li J, Ren C, Hu X, Yang Z (2020) Facile synthesis of novel reduced graphene oxide@polystyrene nanospheres for sensitive label-free electrochemical immunoassay. Chem Commun 56:699–702

    CAS  Google Scholar 

  13. Sun X, Zhou L, Zhao W (2022) A novel electrochemical immunosensor for dibutyl phthalate based on Au@Pt/PEI-rGO and DNA hybridization chain reaction signal amplification strategy. Bioelectrochemistry 145:108104

    CAS  PubMed  Google Scholar 

  14. Miao J, Du K, Li X, Xu X, Dong X, Fang J, Cao W, Wei Q (2021) Ratiometric electrochemical immunosensor for the detection of procalcitonin based on the ratios of SiO2-Fc–COOH–Au and UiO-66-TB complexes. Biosens Bioelectron 171:112713

    CAS  PubMed  Google Scholar 

  15. Bott Neto JL, Martins TS, Machado S, Oliveira ON (2022) Enhanced photocatalysis on graphitic carbon nitride sensitized with gold nanoparticles for photoelectrochemical immunosensors. Appl Surf Sci 606:154952

    CAS  Google Scholar 

  16. Qu L, Yang L, Ren Y, Ren X, Fan D, Xu K, Wang H, Li Y, Ju H, Wei Q (2020) A signal-off electrochemical sensing platform based on Fe3S4-Pd and pineal mesoporous bioactive glass for procalcitonin detection. Sens Actuators B Chem 320:128324

    CAS  Google Scholar 

  17. Yang F, Yang Z, Zhuo Y, Chai Y, Yuan R (2015) Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers. Biosens Bioelectron 66:356–362

    CAS  PubMed  Google Scholar 

  18. Chen Y, Mei LP, Feng JJ, Yuan PX, Luo X, Wang AJ (2019) Simple one-pot aqueous synthesis of 3D superstructured PtCoCuPd alloyed tripods with hierarchical branches for ultrasensitive immunoassay of cardiac troponin I. Biosens Bioelectron 145:111638

    CAS  PubMed  Google Scholar 

  19. Ge XY, Zhang JX, Feng YG, Wang AJ, Mei LP, Feng JJ (2022) Label-free electrochemical biosensor for determination of procalcitonin based on graphene-wrapped Co nanoparticles encapsulated in carbon nanobrushes coupled with AuPtCu nanodendrites. Microchim acta 189:110

    CAS  Google Scholar 

  20. Wang AJ, Zhu XY, Chen Y, Luo X, Xue Y, Feng JJ (2019) Ultrasensitive label-free electrochemical immunoassay of carbohydrate antigen 15-3 using dendritic Au@Pt nanocrystals/ferrocene-grafted-chitosan for efficient signal amplification. Sens Actuators B Chem 292:164–170

    CAS  Google Scholar 

  21. Chen DN, Jiang LY, Zhang JX, Tang C, Wang AJ, Feng JJ (2022) Electrochemical label-free immunoassay of HE4 using 3D PtNi nanocubes assemblies as biosensing interfaces. Microchim acta 189:455

    CAS  Google Scholar 

  22. Chen Y, Wang AJ, Yuan PX, Luo X, Xue Y, Feng JJ (2019) Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens Bioelectron 132:294–301

    CAS  PubMed  Google Scholar 

  23. Cen SY, Feng YG, Zhu JH, Wang XY, Wang AJ, Luo X, Feng JJ (2021) Eco-friendly one-pot aqueous synthesis of ultra-thin AuPdCu alloyed nanowire-like networks for highly sensitive immunoassay of creatine kinase-MB. Sens Actuators B Chem 333:129573

    CAS  Google Scholar 

  24. Yan H, Tang X, Zhu X, Zeng Y, Lu X, Yin Z, Lu Y, Yang Y, Li L (2018) Sandwich-type electrochemical immunosensor for highly sensitive determination of cardiac troponin I using carboxyl-terminated ionic liquid and helical carbon nanotube composite as platform and ferrocenecarboxylic acid as signal label. Sens Actuators B Chem 277:234–240

    CAS  Google Scholar 

  25. Dong K, Dai H, Pu H, Zhang T, Wang Y, Deng Y (2022) Enhanced electrocatalytic activity and stability of Pd-based bimetallic icosahedral nanoparticles towards alcohol oxidation reactions. Int J Hydrog Energy 48:12288–12298

    Google Scholar 

  26. Yang B, Zhang W, Hu S, Liu C, Wang X, Fan Y, Jiang Z, Yang J, Chen W (2021) Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. J Colloid Interface Sci 600:503–512

    CAS  PubMed  Google Scholar 

  27. Chen DN, Wang GQ, Mei LP, Feng JJ, Wang AJ (2023) Dual II-scheme nanosheet-like Bi2S3/Bi2O3/Ag2S heterostructures for ultrasensitive PEC aptasensing of aflatoxin B1 coupled with catalytic signal amplification by dendritic nanorod-like Au@Pd@Pt nanozyme. Biosens Bioelectron 223:115038

    CAS  PubMed  Google Scholar 

  28. Chen C, Zhou X, Wang Z, Han J, Chen S (2022) Core–shell Au@PtAg modified TiO2–Ti3C2 heterostructure and target-triggered DNAzyme cascade amplification for photoelectrochemical detection of ochratoxin A. Anal Chim Acta 1216:339943

    CAS  PubMed  Google Scholar 

  29. Shao F, Gao Y, Xu W, Sun F, Chen L, Li F, Liu W (2022) Catalytic activation of formic acid using Pd nanocluster decorated graphitic carbon nitride for diclofenac reductive hydrodechlorination. J Hazard Mater 446:130677

  30. Ye J, Teng M, Qian X, Wan C, He G, Chen H (2022) A novel MOF-derived strategy to construct Cu-doped CeO2 supported PdCu alloy electrocatalysts for hydrogen evolution reaction. J Ind Eng Chem 120:96–102

  31. Chen MT, Huang ZX, Ye X, Zhang L, Feng JJ, Wang AJ (2023) Caffeine derived graphene-wrapped Fe3C nanoparticles entrapped in hierarchically porous Fe-N-C nanosheets for boosting oxygen reduction reaction. J Colloid Interface Sci 637:216–224

    CAS  PubMed  Google Scholar 

  32. Liu LL, Wu DH, Zhang L, Feng JJ, Wang AJ (2023) FeCo alloy entrapped in N-doped graphitic carbon nanotubes-on-nanosheets prepared by coordination-induced pyrolysis for oxygen reduction reaction and rechargeable Zn-air battery. J Colloid Interface Sci 639:424–433

    CAS  PubMed  Google Scholar 

  33. Cho B, Lee J, Roh IP, Lee MH, Yu T (2022) A facile aqueous-phase synthesis method for small PdCu alloy nanocatalysts to enhance electrochemical CO2 reduction reactivity. J Alloys Compd 911:164990

    CAS  Google Scholar 

  34. Yin X, Hou M, Zhu K, Ye K, Yan J, Cao D, Zhang D, Yao J, Wang G (2022) PdCu nanoparticles modified free-standing reduced graphene oxide framework as a highly efficient catalyst for direct borohydride-hydrogen peroxide fuel cell. Renew Energ 201:160–170

    CAS  Google Scholar 

  35. Zhao X, Dai L, Qin Q, Pei F, Hu C, Zheng N (2017) Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 13:1602970

    Google Scholar 

  36. Sheng J, Kang J, Ye H, Xie J, Zhao B, Fu XZ, Yu Y, Sun R, Wong CP (2018) Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. J Mater Chem A 6:3906–3912

    CAS  Google Scholar 

  37. Duan JJ, Zheng XX, Niu HJ, Feng JJ, Zhang QL, Huang H, Wang AJ (2020) Porous dendritic PtRuPd nanospheres with enhanced catalytic activity and durability for ethylene glycol oxidation and oxygen reduction reactions. J Colloid Interface Sci 560:467–474

    CAS  PubMed  Google Scholar 

  38. Li M, Zhe T, Li F, Li R, Bai F, Jia P, Bu T, Xu Z, Wang L (2022) Hybrid structures of cobalt-molybdenum bimetallic oxide embedded in flower-like molybdenum disulfide for sensitive detection of the antibiotic drug nitrofurantoin. J Hazard Mater 435:129059

    CAS  PubMed  Google Scholar 

  39. Medetalibeyoglu H, Kotan G, Atar N, Yola ML (2020) A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta 220:121403

    CAS  PubMed  Google Scholar 

  40. Medetalibeyoglu H, Beytur M, Akyıldırım O, Atar N, Yola ML (2020) Validated electrochemical immunosensor for ultra-sensitive procalcitonin detection: Carbon electrode modified with gold nanoparticles functionalized sulfur doped MXene as sensor platform and carboxylated graphitic carbon nitride as signal amplification. Sens Actuators B Chem 319:128195

    CAS  Google Scholar 

  41. Wang X, Liao X, Mei L, Zhang M, Chen S, Qiao X, Hong C (2021) An immunosensor using functionalized Cu2O/Pt NPs as the signal probe for rapid and highly sensitive CEA detection with colorimetry and electrochemistry dual modes. Sens Actuators B Chem 341:130032

    CAS  Google Scholar 

  42. Huang X, Miao J, Fang J, Xu X, Wei Q, Cao W (2022) Ratiometric electrochemical immunosensor based on L-cysteine grafted ferrocene for detection of neuron specific enolase. Talanta 239:123075

    CAS  PubMed  Google Scholar 

  43. Song Y, Xu M, Li Z, He L, Hu M, He L, Zhang Z, Du M (2020) A bimetallic CoNi-based metal−organic framework as efficient platform for label-free impedimetric sensing toward hazardous substances. Sens Actuators B Chem 311:127927

    CAS  Google Scholar 

  44. Yan Q, Yang Y, Tan Z, Liu Q, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y (2018) A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron 103:151–157

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Zhejiang Public Welfare Technology Application Research Project (LGG19B050001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiu-Ju Feng or Tuck Yun Cheang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 399 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, DN., Wang, AJ., Feng, JJ. et al. One-pot wet-chemical fabrication of 3D urchin-like core-shell Au@PdCu nanocrystals for electrochemical breast cancer immunoassay. Microchim Acta 190, 353 (2023). https://doi.org/10.1007/s00604-023-05932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05932-7

Keywords

Navigation