Skip to main content
Log in

Polyester resin and graphite flakes: turning conductive ink to a voltammetric sensor for paracetamol sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The development of a disposable electrochemical paper-based analytical device (ePAD) is described using a novel formulation of conductive ink that combines graphite powder, polyester resin, and acetone. As a proof of concept, the proposed sensor was utilized for paracetamol (PAR) sensing. The introduced ink was characterized via morphological, structural, and electrochemical analysis, and the results demonstrated appreciable analytical performance. The proposed ePAD provided linear behavior (R2 = 0.99) in the concentration range between 1 and 60 µmol L−1, a limit of detection of 0.2 µmol L−1, and satisfactory reproducibility (RSD ~ 7.7%, n = 5) applying a potential of + 0.81 V vs Ag at the working electrode. The quantification of PAR was demonstrated in different pharmaceutical formulations. The achieved concentrations revealed good agreement with the labeled values, acceptable accuracy (101% and 106%), and no statistical difference from the data obtained by HPLC at the 95% confidence level. The environmental impact of the new device was assessed using AGREE software, which determined a score of 0.85, indicating that it is eco-friendly. During the pharmacokinetic study of PAR, it was found that the drug has a maximum concentration of 23.58 ± 0.01 µmol L−1, a maximum time of 30 min, and a half-life of 2.15 h. These results are comparable to other studies that utilized HPLC. This suggests that the combination of graphite powder and polyester resin can transform conductive ink into an effective ePAD that can potentially be used in various pharmaceutical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated and analyzed during the development of this study are inserted in the published article and its supplementary material files.

References

  1. The Unsaturated Polyester Resin Market Size | Global Industry Forecast. https://www.marketsandmarkets.com/Market-Reports/unsaturated-polyester-resin-upr-market-891.html?gclid=CjwKCAjw9J2iBhBPEiwAErwpeenvFvnemZLGlvCF977_H4yFLNDd8q2XtPGD62NPoGFHihovZntoGRoCAOUQAvD_BwE. Accessed 24 Apr 2023

  2. Aziz SH, Ansell MP, Clarke SJ, Panteny SR (2005) Modified polyester resins for natural fibre composites. Compos Sci Technol 65:525–535. https://doi.org/10.1016/j.compscitech.2004.08.005

    Article  CAS  Google Scholar 

  3. Parmar MS (2014) Dicarboxylic acid. Encyclopedia of Toxicology: Third Edition 76–79. https://doi.org/10.1016/B978-0-12-386454-3.01217-3

  4. Kim Y, Lee B, Yang S et al (2012) Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing. Curr Appl Phys 12:473–478. https://doi.org/10.1016/j.cap.2011.08.003

    Article  Google Scholar 

  5. Phillips C, Al-Ahmadi A, Potts SJ et al (2017) The effect of graphite and carbon black ratios on conductive ink performance. J Mater Sci 52:9520–9530. https://doi.org/10.1007/s10853-017-1114-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Islam R, Khair N, Ahmed DM, Shahariar H (2019) Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications. Mater Today Commun 19:32–38. https://doi.org/10.1016/J.MTCOMM.2018.12.009

    Article  CAS  Google Scholar 

  7. Khair N, Islam R, Shahariar H (2019) Carbon-based electronic textiles: materials, fabrication processes and applications. J Mater Sci 54:10079–10101

    Article  CAS  Google Scholar 

  8. Stefano JS, Orzari LO, Silva-Neto HA et al (2022) Different approaches for fabrication of low-cost electrochemical sensors. Curr Opin Electrochem 32:100893. https://doi.org/10.1016/j.coelec.2021.100893

    Article  CAS  Google Scholar 

  9. Noviana E, Klunder KJ, Channon RB, Henry CS (2019) Thermoplastic electrode arrays in electrochemical paper-based analytical devices. Anal Chem 91:2431–2438. https://doi.org/10.1021/acs.analchem.8b05218

    Article  CAS  PubMed  Google Scholar 

  10. Noviana E, McCord CP, Clark KM et al (2020) Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab Chip 20:9–34. https://doi.org/10.1039/c9lc00903e

    Article  CAS  PubMed  Google Scholar 

  11. Silva-Neto HA, Arantes IVS, Ferreira AL et al (2023) Recent advances on paper-based microfluidic devices for bioanalysis. TrAC – Trends Anal Chem 158:116893. https://doi.org/10.1016/j.trac.2022.116893

    Article  CAS  Google Scholar 

  12. Rocha D, Silva-Neto H, Oliveira L, et al (2021) Disposable stencil-printed carbon electrodes for electrochemical analysis of sildenafil citrate in commercial and adulterated tablets. Braz J Anal Chem. https://doi.org/10.30744/brjac.2179-3425.ar-65-2021

  13. de Lima LF, Ferreira AL, Maciel CC et al (2021) Disposable and low-cost electrochemical sensor based on the colorless nail polish and graphite composite material for tartrazine detection. Talanta 227:122200. https://doi.org/10.1016/j.talanta.2021.122200

    Article  CAS  PubMed  Google Scholar 

  14. Sousa LR, Silva-Neto HA, Castro LF, et al (2023) “Do it yourself” protocol to fabricate dual-detection paper-based analytical device for salivary biomarker analysis. Anal BioanalChem 1–10. https://doi.org/10.1007/s00216-023-04581-2

  15. Silva-Neto HA, Duarte-Junior GF, Rocha DS et al (2023) Recycling 3D printed residues for the development of disposable paper-based electrochemical sensors. ACS Appl Mater Interfaces 15:14111–14121. https://doi.org/10.1021/acsami.3c00370

    Article  CAS  Google Scholar 

  16. De Souza DC, Orzari LO et al (2021) Electrochemical sensor based on beeswax and carbon black thin biofilms for determination of paraquat in Apis Mellifera honey. Food Anal Methods 14:606–615. https://doi.org/10.1007/s12161-020-01900-6

    Article  Google Scholar 

  17. Adkins JA, Noviana E, Henry CS (2016) Development of a quasi-steady flow electrochemical paper-based analytical device. Anal Chem 88:10639–10647. https://doi.org/10.1021/acs.analchem.6b03010

    Article  CAS  PubMed  Google Scholar 

  18. Shitanda I, Takamatsu S, Watanabe K, Itagaki M (2009) Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds. Electrochim Acta 54:4933–4936. https://doi.org/10.1016/j.electacta.2009.04.005

    Article  CAS  Google Scholar 

  19. Boumya W, Taoufik N, Achak M, Barka N (2021) Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. J Pharm Anal 11:138–154. https://doi.org/10.1016/J.JPHA.2020.11.003

    Article  PubMed  Google Scholar 

  20. Noviana E, Carrão DB, Pratiwi R, Henry CS (2020) Emerging applications of paper-based analytical devices for drug analysis: a review. Anal Chim Acta 1116:70–90. https://doi.org/10.1016/j.aca.2020.03.013

    Article  CAS  PubMed  Google Scholar 

  21. Kang X, Wang J, Wu H et al (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759. https://doi.org/10.1016/j.talanta.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  22. Serrano N, Castilla Ò, Ariño C et al (2019) Commercial screen-printed electrodes based on carbon nanomaterials for a fast and cost-effective voltammetric determination of paracetamol, ibuprofen and caffeine in water samples. Sensors 19:4039. https://doi.org/10.3390/s19184039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Oliveira TR, Fonseca WT, de Oliveira SG, Faria RC (2019) Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes. Talanta 195:480–489. https://doi.org/10.1016/J.TALANTA.2018.11.047

    Article  PubMed  Google Scholar 

  24. Taouri L, Bourouina M, Bourouina S, Hauchard D (2022) A new highly sensitive micro-sensor for the ultra-traces analysis of paracetamol directly in water. Microchem J 178:107380. https://doi.org/10.1016/j.microc.2022.107380

    Article  CAS  Google Scholar 

  25. Tsvetkova B (2012) Simultaneous high-performance liquid chromatography determination of paracetamol and ascorbic acid in tablet dosage forms. Afr J Pharm Pharmacol 6:1332–1336. https://doi.org/10.5897/ajpp12.163

    Article  CAS  Google Scholar 

  26. Behera S (2012) UV-visible spectrophotometric method development and validation of assay of paracetamol tablet formulation. J Anal Bioanal Tech 03:1000151. https://doi.org/10.4172/2155-9872.1000151

    Article  CAS  Google Scholar 

  27. Bosch ME, Sánchez AJR, Rojas FS, Ojeda CB (2006) Determination of paracetamol: historical evolution. J Pharm Biomed Anal 42:291–321. https://doi.org/10.1016/J.JPBA.2006.04.007

    Article  CAS  Google Scholar 

  28. Katseli V, Economou A, Kokkinos C (2020) A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta 208:120388. https://doi.org/10.1016/J.TALANTA.2019.120388

    Article  CAS  PubMed  Google Scholar 

  29. Tefera M, Geto A, Tessema M, Admassie S (2016) Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode. Food Chem 210:156–162. https://doi.org/10.1016/j.foodchem.2016.04.106

    Article  CAS  PubMed  Google Scholar 

  30. Silva-Neto HA, Cardoso TMG, McMahon CJ et al (2021) Plug-and-play assembly of paper-based colorimetric and electrochemical devices for multiplexed detection of metals. Analyst 146:3463–3473. https://doi.org/10.1039/d1an00176k

    Article  CAS  PubMed  Google Scholar 

  31. Pena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREE - Analytical GREEnness metric approach and software. Anal Chem 92:10076–10082. https://doi.org/10.1021/acs.analchem.0c01887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kissinger PT (1983) Heineman WR cyclic voltammetry. J Chem Educ 60:702. https://doi.org/10.1021/ed060p702

    Article  CAS  Google Scholar 

  33. Arduini F, Cinti S, Mazzaracchio V et al (2020) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 156:112033. https://doi.org/10.1016/j.bios.2020.112033

    Article  CAS  PubMed  Google Scholar 

  34. Demir N, Atacan K, Ozmen M, Bas SZ (2020) Design of a new electrochemical sensing system based on MoS2-TiO2/reduced graphene oxide nanocomposite for the detection of paracetamol. New J Chem 44:11759–11767. https://doi.org/10.1039/d0nj02298e

    Article  CAS  Google Scholar 

  35. Hazani NN, Mohd Y, Ghazali SAISM et al (2019) Electrochemical studies on corrosion inhibition behaviour of synthesised 2-acetylpyridine 4-ethyl-3-thiosemicarbazone and its Tin(IV) complex for mild steel in 1 M HCl solution. J Electrochem Sci Technol 10:29–36. https://doi.org/10.5229/JECST.2019.10.1.29

    Article  CAS  Google Scholar 

  36. Chandra P, Son NX, Noh HB et al (2013) Investigation on the downregulation of dopamine by acetaminophen administration based on their simultaneous determination in urine. Biosens Bioelectron 39:139–144. https://doi.org/10.1016/J.BIOS.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  37. Babaei A, Garrett DJ, Downard AJ (2011) Selective simultaneous determination of paracetamol and uric acid using a glassy carbon electrode modified with multiwalled Carbon nanotube/chitosan composite. Electroanalysis 23:417–423. https://doi.org/10.1002/elan.201000406

    Article  CAS  Google Scholar 

  38. Tanuja SB, Kumara Swamy BE, Pai KV (2017) Electrochemical determination of paracetamol in presence of folic acid at nevirapine modified carbon paste electrode: a cyclic voltammetric study. J Electroanal Chem 798:17–23. https://doi.org/10.1016/J.JELECHEM.2017.05.025

    Article  CAS  Google Scholar 

  39. Fu L, Xie K, Zheng Y et al (2018) Graphene ink film based electrochemical detector for paracetamol analysis. Electronics 7:15. https://doi.org/10.3390/electronics7020015

    Article  CAS  Google Scholar 

  40. Mangaiyarkarasi R, Premlatha S, Khan R et al (2020) Electrochemical performance of a new imidazolium ionic liquid crystal and carbon paste composite electrode for the sensitive detection of paracetamol. J Mol Liq 319:114255. https://doi.org/10.1016/J.MOLLIQ.2020.114255

    Article  CAS  Google Scholar 

  41. Saciloto TR, Cervini P, Cavalheiro ÉTG (2013) Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screen-printed composite electrode. J Braz Chem Soc 24:1461–1468. https://doi.org/10.5935/0103-5053.20130186

    Article  CAS  Google Scholar 

  42. Okoth OK, Yan K, Liu L, Zhang J (2016) Simultaneous electrochemical determination of paracetamol and diclofenac based on poly(diallyldimethylammonium chloride) functionalized graphene. Electroanalysis 28:76–82. https://doi.org/10.1002/elan.201500360

    Article  CAS  Google Scholar 

  43. Jeevagan AJ, John SA (2012) Electrochemical determination of caffeine in the presence of paracetamol using a self-assembled monolayer of non-peripheral amine substituted copper(II) phthalocyanine. Electrochim Acta 77:137–142. https://doi.org/10.1016/j.electacta.2012.05.090

    Article  CAS  Google Scholar 

  44. Karki S, Friščić T, Fabián L et al (2009) Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater 21:3905–3909. https://doi.org/10.1002/ADMA.200900533

    Article  CAS  Google Scholar 

  45. Battu PR, Reddy MS (2009) RP-HPLC Method for simultaneous estimation of paracetamol and ibuprofen in tablets. Asian J Research Chem 2:70–72. https://doi.org/10.1094/PDIS.2001.85.8.879

    Article  Google Scholar 

  46. Cetinkaya A, Yıldız E, Kaya SI et al (2022) A green synthesis route to develop molecularly imprinted electrochemical sensor for selective detection of vancomycin from aqueous and serum samples. Green Anal Chem 2:100017. https://doi.org/10.1016/j.greeac.2022.100017

    Article  Google Scholar 

  47. World Health Organization (1975) Guidelines for evaluation of drugs for use in man: report of a WHO scientific group‎. https://apps.who.int/iris/handle/10665/41149. Accessed 19 July 2023

  48. Bertolini A, Ferrari A, Ottani A et al (2006) Paracetamol: new vistas of an old drug. CNS Drug Rev 12:250–275. https://doi.org/10.1111/j.1527-3458.2006.00250.x

    Article  CAS  PubMed  Google Scholar 

  49. Mazaleuskaya LL, Sangkuhl K, Thorn CF et al (2015) PharmGKB summary: Pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics 25:416–426. https://doi.org/10.1097/FPC.0000000000000150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Forrest JAH, Clements JA, Prescott LF (1982) Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet 7:93–107. https://doi.org/10.2165/00003088-198207020-00001/METRICS

    Article  CAS  PubMed  Google Scholar 

  51. McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30:2174–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Multi-user Laboratory of high-resolution microscopy (LabMic/UFG) for using their facilities during (SEM and Raman) measurements. The Laboratory of Clinical Analysis and Health Education (LACES) of the Biological Sciences Institute from Federal University, Dr. Gabriela Bazílio, and Professor Gabriela Duarte are also acknowledged for using their facilities during the sample preparation and manipulation.

Funding

The authors would like to thank CAPES (finance code 88887.192880/2018–00 and 001), CNPq (grants 307554/2020–1, 405620/2021–7, 142412/2020–1, and 146507/2022–3) and INCTBio (grant 465389/2014–7) for the financial support and granted scholarships and researcher fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendell K. T. Coltro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 841 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, L.C., Rocha, D.S., Silva-Neto, H.A. et al. Polyester resin and graphite flakes: turning conductive ink to a voltammetric sensor for paracetamol sensing. Microchim Acta 190, 324 (2023). https://doi.org/10.1007/s00604-023-05914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05914-9

Keywords

Navigation