Skip to main content
Log in

A biosensor based on Fe3O4@MXene-Au nanocomposites with high peroxidase-like activity for colorimetric and smartphone-based detection of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel magnetic nanozyme Fe3O4@MXene-Au nanocomposite, which possessed higher peroxidase-like activity than that of Fe3O4 nanoparticles and Fe3O4@MXene nanocomposites, was developed. The outstanding magnetic properties of the nanozyme endowed it with the ability of simple and rapid separation, achieving great recyclability. Based on Fe3O4@MXene-Au nanocomposites and glucose oxidase (Glu Ox), a highly selective colorimetric biosensor for glucose detection was developed. Fe3O4@MXene-Au nanocomposites can catalyze H2O2 produced from glucose catalyzed by glucose oxidase to ·OH and oxidize colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) with a significant absorbance at 652 nm. The linear range of glucose was 0–1.4 mM under optimal conditions, with a limit of detection (LOD) of 0.11 mM. Glucose in human whole blood was successfully detected with satisfactory recoveries. Furthermore, a facile agarose hydrogel detection platform was designed. With smartphone software, glucose detection can be realized by the agarose hydrogel platform, demonstrating the potential in on-site and visual detection of glucose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Şen M, Yüzer E, Doğan V, Avcı I, Ensarioğlu K, Aykaç A, Kaya N, Can M, Kılıç V (2022) Colorimetric detection of H2O2 with Fe3O4@Chi nanozyme modified µPADs using artificial intelligence. Mikrochim Acta 189:10

    Article  Google Scholar 

  2. Duan W, Qiu Z, Cao S, Guo Q, Huang J, Xing J, Lu X, Zeng J (2022) Pd-Fe3O4 Janus nanozyme with rational design for ultrasensitive colorimetric detection of biothiols. Biosens Bioelectron 196:113724

    Article  CAS  PubMed  Google Scholar 

  3. Duan W, Wang J, Peng X, Cao S, Shang J, Qiu Z, Lu X, Zeng J (2023) Rational design of trimetallic AgPt-Fe3O4 nanozyme for catalyst poisoning-mediated CO colorimetric detection. Biosens. Bioelectron. 223:115022

    Article  CAS  PubMed  Google Scholar 

  4. Yang W, Fei J, Xu W, Jiang H, Sakran M, Hong J, Zhu W, Zhou X (2022) A biosensor based on the biomimetic oxidase Fe3O4@MnO2 for colorimetric determination of uric acid. Colloids Surf B 212:112347

    Article  CAS  Google Scholar 

  5. Yang W, Weng C, Li X, Xu W, Fei J, Hong J, Zhang J, Zhu W, Zhou X (2022) An“on-off” ratio photoluminescence sensor based on catalytically induced PET effect by Fe3O4 NPs for the determination of coumarin. Food Chem. 368:130838

    Article  CAS  PubMed  Google Scholar 

  6. Gong L, Zhang X, Ge K et al (2021) Carbon nitride-based nanocaptor: An intelligent nanosystem with metal ions chelating effect for enhanced magnetic targeting phototherapy of Alzheimer’s disease. Biomaterials 267:120483

    Article  CAS  PubMed  Google Scholar 

  7. Yao Y, Zhao D, Li N et al (2019) Multifunctional Fe3O4@polydopamine@DNA-fueled molecular machine for magnetically targeted intracellular Zn2+ imaging and fluorescence/MRI guided photodynamic-photothermal therapy. Anal Chem 91(12):7850–7857

    Article  CAS  PubMed  Google Scholar 

  8. Xu W, Sakran M, Fei J, Li X, Weng C, Yang W, Zhu G, Zhu W, Zhou X (2021) Electrochemical biosensor based on HRP/Ti3C2/nafion film for determination of hydrogen peroxide in serum samples of patients with acute myocardial infarction. ACS Biomater Sci Eng 6:2767–2773

    Article  Google Scholar 

  9. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 37:4248–4253

    Article  Google Scholar 

  10. Fu M, Liu M, Wu X, Cai Z, Zhang X, Xi Z, Wang Y, Dai C, Kang X, Liu Z, Miao B, Gao F (2022) A novel ternary Ag-Cu2O/Ti3C2 heterostructure with high peroxidase-like activity for on-site colorimetric detection of galactose. Sens. Actuators B Chem. 369:132343

    Article  CAS  Google Scholar 

  11. Shi Y, Liu Z, Liu R, Wu R, Zhang J (2022) DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem Eng J 442:136072

    Article  CAS  Google Scholar 

  12. Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z (2015) A strongly coupled Au/Fe3 O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 18:8495–8502

    Article  Google Scholar 

  13. Yin H, Tang H, Wang D, Gao Y, Tang Z (2012) Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 9:8288–8297

    Article  Google Scholar 

  14. Xu W, Fei J, Yang W, Zheng Y, Dai Y, Sakran M, Zhang J, Zhu W, Hong J, Zhou X (2022) A colorimetric/electrochemical dual-mode sensor based on Fe3O4@MoS2-Au NPs for high-sensitivity detection of hydrogen peroxide. Microchem J 181:107825

    Article  CAS  Google Scholar 

  15. Wang Y, Wang Y, Wang F, Chi H, Zhao G, Zhang Y, Li T, Wei Q (2022) Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions. J Colloid Interface Sci 606:510–517

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Zhao G, Chi H, Yang S, Niu Q, Wu D, Cao W, Li T, Ma H, Wei Q (2021) Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay. J Am Chem Soc 1:504–512

    Article  Google Scholar 

  17. Liao QL, Jiang H, Zhang XW, Qiu QF, Tang Y, Yang XK, Liu YL, Huang WH (2019) A single nanowire sensor for intracellular glucose detection. Nanoscale 22:10702–10708

    Article  Google Scholar 

  18. Pang Y, Huang Z, Yang Y, Long Y, Zheng H (2018) Colorimetric detection of glucose based on ficin with peroxidase-like activity. Spectrochim Acta A 189:510–515

    Article  CAS  Google Scholar 

  19. Pedraza E, Karajić A, Raoux M, Perrier R, Pirog A, Lebreton F, Arbault S, Gaitan J, Renaud S, Kuhn A, Lang J (2015) Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes. Lab Chip 19:3880–3890

    Article  Google Scholar 

  20. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 19:2206–2210

    Article  Google Scholar 

  21. Billingsley K, Balaconis MK, Dubach JM, Zhang N, Lim E, Francis KP, Clark HA (2010) Fluorescent nano-optodes for glucose detection. Anal Chim 9:3707–3713

    Article  Google Scholar 

  22. Fang X, Wu X, Hu X, Li Z, Wang G (2016) Native carbon nanodots as a fluorescent probe for assays based on the use of glucose oxidase or horseradish peroxidase. Mikrochim Acta 10:2761–2770

    Article  Google Scholar 

  23. Ranjitha N, Krishnamurthy G, Manjunatha MN, Naik HSB, Pari M, Lakshmikantha VNKJ, Pradeepa K (2023) J Mol Struct 1274:134483

    Article  CAS  Google Scholar 

  24. Han W, Zhang X, Wang R, Bai T, Liu H, Cui L, Liu J, Liang X (2023) Non-enzymatic electrochemical glucose sensor based on Pt2Pd1 alloy nanocrystals with high-index facets. J. Alloys Compd. 936:168287

    Article  CAS  Google Scholar 

  25. Dong W, Chen G, Ding M, Cao H, Li G, Fang M, Shi W (2023) Constructing a novel strategy for one-step colorimetric glucose biosensing based on Co-Nx sites on porous carbon as oxidase mimetics. Microchem J 188:108448

    Article  CAS  Google Scholar 

  26. Zhang R, Liu L, Li W, Luo X, Wu F (2023) Luminescent carbon dots with excellent peroxidase mimicking property for fluorometric and colorimetric detection of glucose. Colloids Surf B 222:113125

    Article  CAS  Google Scholar 

  27. Sow WT, Ye F, Zhang C et al (2020) Smart materials for point-of-care testing: from sample extraction to analyte sensing and readout signal generator. Biosens Bioelectron 170:112682

    Article  CAS  PubMed  Google Scholar 

  28. Lan Y, He B, Tan CS, Ming D (2022) Applications of smartphone-based aptasensor for diverse targets detection. Biosensors 7:477

    Article  Google Scholar 

  29. Biswas GC, Choudhury S, Rabbani MM, Das J (2022) A review on potential electrochemical point-of-care tests targeting pandemic infectious disease detection: COVID-19 as a reference. Chemosensors 7:269

    Article  Google Scholar 

  30. R.E. Madrid, F. Ashur Ramallo, D.E. Barraza and R.E. Chaile, Smartphone-based biosensor devices for healthcare: technologies, trends, and adoption by end-users, Bioengineering 3 (2022) 101

  31. Beduk T, Beduk D, Hasan MR, GulerCelik E, Kosel J, Narang J, Salama KN, Timur S (2022) Smartphone-based multiplexed biosensing tools for health monitoring. Biosensors 8:583

    Article  Google Scholar 

  32. Li D, Sun C, Mei X, Yang L (2023) Achieving broad availability of SARS-CoV-2 detections via smartphone-based analysis. Trends Analyt Chem 158:116878

    Article  CAS  PubMed  Google Scholar 

  33. Zahra QUA, Mohsan SAH, Shahzad F, Qamar M, Qiu B, Luo Z, Zaidi SA (2022) Progress in smartphone-enabled aptasensors. Biosens Bioelectron 215:114509

    Article  CAS  PubMed  Google Scholar 

  34. Yang W, Weng C, Li X, He H, Fei J, Xu W, Yan X, Zhu W, Zhang H, Zhou X (2021) A sensitive colorimetric sensor based on one-pot preparation of h-Fe3O4@ppy with high peroxidase-like activity for determination of glutathione and H2O2. Sens Actuators B Chem

    Article  CAS  Google Scholar 

  35. Li X, Weng C, Wang J, Yang W, Lu Q, Yan X, Sakran MA, Hong J, Zhu W, Zhou X (2020) A label-free electrochemical magnetic aptasensor based on exonuclease III–assisted signal amplification for determination of carcinoembryonic antigen. Mikrochim Acta 9

  36. Hussein EA, Zagho MM, Rizeq BR, Younes NN, Pintus G, Mahmoud KA, Nasrallah GK, Elzatahry AA (2019) <p>Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int J Nanomed 14:4529–4539

    Article  CAS  Google Scholar 

  37. Liu G, Xiong Q, Xu Y, Fang Q, Leung KC, Sang M, Xuan S, Hao L (2022) Magnetically separable MXene@Fe3O4/Au/PDA nanosheets with photothermal-magnetolytic coupling antibacterial performance. Appl Surf Sci 590:153125

    Article  CAS  Google Scholar 

  38. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, Qin S, Han M, Yang W, Liu J, Wang X, Gogotsi Y, Razal JM (2020) Scalable manufacturing of free-standing, strong Ti3 C2Tx MXene films with outstanding conductivity. Adv Mater 23:2001093

    Article  Google Scholar 

  39. Vikraman D, Hussain S, Hailiang L, Karuppasamy K, Sivakumar P, Santhoshkumar P, Jung J, Kim H (2022) Spinel-structured metal oxide-embedded MXene nanocomposites for efficient water splitting reactions. Inorg Chem Front 22:5903–5916

    Article  Google Scholar 

  40. Xu J, Zeng G, Lin Q, Gu Y, Wang X, Feng Z, Sengupta A (2022) Application of 3D magnetic nanocomposites: MXene-supported Fe3O4@CS nanospheres for highly efficient adsorption and separation of dyes. Sci Total Environ 822:153544

    Article  CAS  PubMed  Google Scholar 

  41. Yuan X, Zhao H, Yuan Y, Chen M, Zhao L, Xiong Z (2022) CuCo2S4 nanozyme-based stimulus-responsive hydrogel kit for rapid point-of-care testing of uric acid. Mikrochim Acta 8

  42. Tabani H, Alexovič M, Sabo J, Ramos Payán M (2021) An overview on the recent applications of agarose as a green biopolymer in micro-extraction-based sample preparation techniques. Talanta 224:121892

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2021YFF1200800, 2022YFA1104800), the National Natural Science Foundation of China (No. 81773681, 21904069, 22274079), the Natural Science Foundation of Jiangsu Province (No. BK20190653), Chinese Postdoctoral Science Foundation (No. 2017M621789), and Medical Research Foundation of Jiangsu Commission of Health (No. Z2020009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanying Zhu, Junli Hong or Xuemin Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.65 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, J., Yang, W., Dai, Y. et al. A biosensor based on Fe3O4@MXene-Au nanocomposites with high peroxidase-like activity for colorimetric and smartphone-based detection of glucose. Microchim Acta 190, 336 (2023). https://doi.org/10.1007/s00604-023-05900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05900-1

Keywords

Navigation