Skip to main content
Log in

Disposable electrochemical platform based on solid-binding peptides and carbon nanomaterials: an alternative device for leishmaniasis detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Neglected tropical diseases are those caused by infectious agents or parasites and are considered endemic in low-income populations. These diseases also have unacceptable indicators and low investment in research, drug production, and control. Tropical diseases such as leishmaniasis are some of the main causes of morbidity and mortality around the globe. Electrochemical immunosensors are promising tools for diagnostics against these diseases. One such benefit is the possibility of assisting diagnosis in isolated regions, where laboratory infrastructure is lacking. In this work, different peptides were investigated to detect antibodies against Leishmania in human and canine serum samples. The peptides evaluated (395-KKG and 395-G) have the same recognition site but differ on their solid-binding domains, which ensure affinity to spontaneously bind to either graphene oxide (GO) or graphene quantum dots (GQD). Cyclic voltammetry and differential pulse voltammetry were employed to investigate the electrochemical behavior of each assembly step and the role of each solid-binding domain coupled to its anchoring material. The graphene affinity peptide (395-G) showed better reproducibility and selectivity when coupled to GQD. Under the optimized set of experimental conditions, negative and positive human serum samples responses were distinguished based on a cut-off value of 82.5% at a 95% confidence level. The immunosensor showed selective behavior to antibodies against Mycobacterium leprae and Mycobacterium tuberculosis, which are similar antibodies and potentially sources of false positive tests. Therefore, the use of the graphene affinity peptide as a recognition site achieved outstanding performance for the detection of Leishmania antibodies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cordeiro TAR, de Resende MAC, Moraes SC dos S, et al (2021) Electrochemical biosensors for neglected tropical diseases: a review. Talanta 234:. https://doi.org/10.1016/j.talanta.2021.122617

  2. Kammona O, Tsanaktsidou E (2021) Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 605:120761. https://doi.org/10.1016/j.ijpharm.2021.120761

    Article  CAS  PubMed  Google Scholar 

  3. Weng HB, Chen HX, Wang MW (2018) Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 7:1–9. https://doi.org/10.1186/s40249-018-0444-1

    Article  Google Scholar 

  4. World Healthy Organization (2023) Leishamaniasis. In: January 2023. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis

  5. Ahmad A, Ullah S, Syed F et al (2020) Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine 15:809–828. https://doi.org/10.2217/nnm-2019-0413

    Article  CAS  PubMed  Google Scholar 

  6. Oliveira SS, Ferreira CS, Branquinha MH et al (2021) Overcoming multi-resistant leishmania treatment by nanoencapsulation of potent antimicrobials. J Chem Technol Biotechnol 96:2123–2140. https://doi.org/10.1002/jctb.6633

    Article  CAS  Google Scholar 

  7. Freire ML, Machado de Assis T, Oliveira E et al (2019) Performance of serological tests available in Brazil for the diagnosis of human visceral leishmaniasis. PLoS Negl Trop Dis 13:e0007484. https://doi.org/10.1371/journal.pntd.0007484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Farshchi F, Saadati A, Hasanzadeh M (2020) Optimized DNA-based biosensor for monitoring Leishmania infantum in human plasma samples using biomacromolecular interaction: a novel platform for infectious disease diagnosis. Anal Methods 12:4759–4768. https://doi.org/10.1039/D0AY01516D

    Article  CAS  PubMed  Google Scholar 

  9. Martins BR, Barbosa YO, Andrade CMR et al (2020) Development of an electrochemical immunosensor for specific detection of visceral leishmaniasis using gold-modified screen-printed carbon electrodes. Biosensors 10:1–15. https://doi.org/10.3390/BIOS10080081

    Article  Google Scholar 

  10. Braz BA, Hospinal-Santiani M, Martins G, et al (2022) Graphene-binding peptide in fusion with SARS-CoV-2 antigen for electrochemical immunosensor construction. Biosensors (Basel) 12:. https://doi.org/10.3390/bios12100885

  11. Gogola JL, Martins G, Gevaerd A et al (2021) Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal Chim Acta 1166:1–7. https://doi.org/10.1016/j.aca.2021.338548

    Article  CAS  Google Scholar 

  12. Valenga MGP, Martins G, Martins TAC et al (2023) Biochar: an environmentally friendly platform for construction of a SARS-CoV-2 electrochemical immunosensor. Sci Total Environ 858:159797. https://doi.org/10.1016/j.scitotenv.2022.159797

    Article  CAS  PubMed  Google Scholar 

  13. Gevaerd A, Banks CE, Bergamini MF, Marcolino-Junior LH (2019) Graphene quantum dots modified screen-printed electrodes as electroanalytical sensing platform for diethylstilbestrol. Electroanalysis 31:838–843. https://doi.org/10.1002/elan.201800838

    Article  CAS  Google Scholar 

  14. Gevaerd A, Banks CE, Bergamini MF, Marcolino-Junior LH (2020) Nanomodified screen-printed electrode for direct determination of Aflatoxin B1 in malted barley samples. Sens Actuators B Chem 307:. https://doi.org/10.1016/j.snb.2019.127547

  15. Mansuriya B, Altintas Z (2020) Applications of graphene quantum dots in biomedical sensors. Sensors 20:1072. https://doi.org/10.3390/s20041072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liberato MS, Mancini RSN, Factori IM et al (2019) Peptide-based assemblies on electrospun polyamide-6/chitosan nanofibers for detecting visceral leishmaniasis antibodies. ACS Appl Electron Mater 1:2086–2095. https://doi.org/10.1021/acsaelm.9b00476

    Article  CAS  Google Scholar 

  17. Brazaca LC, dos Santos PL, de Oliveira PR, et al (2021) Biosensing strategies for the electrochemical detection of viruses and viral diseases – a review. Anal Chim Acta 1159:. https://doi.org/10.1016/j.aca.2021.338384

  18. Cretich M, Gori A, D’Annessa I et al (2019) Peptides for infectious diseases: from probe design to diagnostic microarrays. Antibodies 8:23. https://doi.org/10.3390/antib8010023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pandey S, Malviya G, Chottova Dvorakova M (2021) Role of peptides in diagnostics. Int J Mol Sci 22:8828. https://doi.org/10.3390/ijms22168828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. ThomazSoccol V, Pasquali AKS, Pozzolo EM et al (2017) More than the eyes can see: the worrying scenario of canine leishmaniasis in the Brazilian side of the triple border. PLoS One 12:e0189182. https://doi.org/10.1371/journal.pone.0189182

    Article  CAS  Google Scholar 

  21. MINISTÉRIO DA SAÚDE (2006) Manual de vigilância e controle da leishmaniose visceral

  22. Alban SM, de Moura JF, Minozzo JC et al (2013) Identification of mimotopes of Mycobacterium leprae as potential diagnostic reagents. BMC Infect Dis 13:42. https://doi.org/10.1186/1471-2334-13-42

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pereira JC, Dos Santos SP, De Souza LMB et al (2021) The efficacy of recombinant protein lbk39 for the diagnosis of leishmaniosis in dogs. Parasitology 148:302–310. https://doi.org/10.1017/S0031182020001997

    Article  CAS  PubMed  Google Scholar 

  24. Lamiable A, Thévenet P, Rey J et al (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44:W449–W454. https://doi.org/10.1093/nar/gkw329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merrifield RB (1969) Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol 221–96

  26. Ramos MK, Zarbin AJG (2020) Graphene/copper oxide nanoparticles thin films as precursor for graphene/copper hexacyanoferrate nanocomposites. Appl Surf Sci 515:146000. https://doi.org/10.1016/j.apsusc.2020.146000

    Article  CAS  Google Scholar 

  27. Lacina K, Věžník J, Sopoušek J et al (2023) Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing. Bioelectrochemistry 149:108308. https://doi.org/10.1016/j.bioelechem.2022.108308

    Article  CAS  PubMed  Google Scholar 

  28. Braiek M, Rokbani K, Chrouda A et al (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2:417–426. https://doi.org/10.3390/bios2040417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eissa S, Zourob M (2021) Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal Chem 93:1826–1833. https://doi.org/10.1021/acs.analchem.0c04719

    Article  CAS  PubMed  Google Scholar 

  30. Shaikh MO, Srikanth B, Zhu P-Y, Chuang C-H (2019) Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors 19:3990. https://doi.org/10.3390/s19183990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang K, Lin X, Zhang M et al (2022) Review of electrochemical biosensors for food safety detection. Biosensors 12:959. https://doi.org/10.3390/bios12110959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martins G, Gogola JL, Caetano FR et al (2019) Quick electrochemical immunoassay for hantavirus detection based on biochar platform. Talanta 204:163–171. https://doi.org/10.1016/j.talanta.2019.05.101

    Article  CAS  PubMed  Google Scholar 

  33. Biedulska M, Jakóbczyk P, Sosnowska M et al (2021) Cytocompatibility of stabilized black phosphorus nanosheets tailored by directly conjugated polymeric micelles for human breast cancer therapy. Sci Rep 11:9304. https://doi.org/10.1038/s41598-021-88791-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cui Y, Kim SN, Jones SE et al (2010) Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett 10:4559–4565. https://doi.org/10.1021/nl102564d

    Article  CAS  PubMed  Google Scholar 

  35. Hughes ZE, Walsh TR (2015) What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J Mater Chem B 3:3211–3221. https://doi.org/10.1039/C5TB00004A

    Article  CAS  PubMed  Google Scholar 

  36. Camden AN, Barr SA, Berry RJ (2013) Simulations of peptide-graphene interactions in explicit water. J Phys Chem B 117:10691–10697. https://doi.org/10.1021/jp403505y

    Article  CAS  PubMed  Google Scholar 

  37. Nazari-Vanani R, Sattarahmady N, Yadegari H et al (2018) Electrochemical quantitation of Leishmania infantum based on detection of its kDNA genome and transduction of non-spherical gold nanoparticles. Anal Chim Acta 1041:40–49. https://doi.org/10.1016/j.aca.2018.08.036

    Article  CAS  PubMed  Google Scholar 

  38. Cordeiro TAR, Martins HR, Franco DL et al (2020) Impedimetric immunosensor for rapid and simultaneous detection of chagas and visceral leishmaniasis for point of care diagnosis. Biosens Bioelectron 169:112573. https://doi.org/10.1016/j.bios.2020.112573

    Article  CAS  PubMed  Google Scholar 

  39. Ramos-Jesus J, Pontes-de-Carvalho LC, Melo SMB et al (2016) A gold nanoparticle piezoelectric immunosensor using a recombinant antigen for detecting Leishmania infantum antibodies in canine serum. Biochem Eng J 110:43–50. https://doi.org/10.1016/j.bej.2016.01.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (financial code 001 and CAPES 09/2020 Epidemias 88887.504861/2020-00 and 88881.505280/2020-01), Conselho Nacional de Pesquisa (CNPq) (grants 311290/2020-5 and 309803/2020-9), and Fundação Araucária (PBA2022011000056 and PDT2020221000003). The authors also acknowledge financial support from the Brazilian Institute of Science and Technology (INCT)—Nanomaterials for Life (Proc. Number 406079/2022-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Márcio F. Bergamini or Luiz H. Marcolino-Junior.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1871 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braz, B.A., Hospinal-Santiani, M., Martins, G. et al. Disposable electrochemical platform based on solid-binding peptides and carbon nanomaterials: an alternative device for leishmaniasis detection. Microchim Acta 190, 321 (2023). https://doi.org/10.1007/s00604-023-05891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05891-z

Keywords

Navigation