Skip to main content
Log in

Impedimetric immunosensor for microalbuminuria based on a WS2/Au water-phase assembled nanocomposite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical impedimetric biosensor for human serum albumin (HSA) determination is proposed. The biosensor is based on water-phase assembled nanocomposites made of 2D WS2 nanoflakes and Au nanoparticles (AuNPs). The WS2 has been produced using a liquid-phase exfoliation strategy assisted by sodium cholate, obtaining a water-stable suspension that allowed the straightforward decoration with AuNPs directly in the aqueous phase. The resulting WS2/Au nanocomposite has been characterized by atomic force microscopy and Raman spectroscopy and, then, employed to modify screen-printed electrodes. Good electron-transfer features have been achieved. An electrochemical immunosensing platform has been assembled exploiting cysteamine-glutaraldehyde covalent chemistry for antibody (Ab) immobilization. The resulting immunosensor exhibited good sensitivity for HSA detection (LOD = 2 ng mL−1), with extended linear range (0.005 – 100 µg mL−1), providing a useful analytical tool for HSA determination in urine at relevant clinical ranges for microalbuminuria screening. The HSA quantification in human urine samples resulted in recoveries from 91.8 to 112.4% and was also reproducible (RSD < 7.5%, n = 3), with marked selectivity. This nanocomposite, thanks to the reliable performance and the ease of the assembling strategy, is a promising alternative for electrochemical immunosensing of health relevant markers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available on request from the corresponding authors.

References

  1. Carfray A, Patel K, Whitaker P et al (2000) Albumin as an outcome measure in haemodialysis in patients: the effect of variation in assay method. Nephrol Dial Transplant 15:1819–1822. https://doi.org/10.1093/ndt/15.11.1819

    Article  CAS  PubMed  Google Scholar 

  2. Infusino I, Panteghini M (2013) Serum albumin: accuracy and clinical use. Clin Chim Acta 419:15–18. https://doi.org/10.1016/j.cca.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  3. Budhathoki-Uprety J, Shah J, Korsen JA et al (2019) Synthetic molecular recognition nanosensor paint for microalbuminuria. Nat Commun 10:3605. https://doi.org/10.1038/s41467-019-11583-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Busby DE, Bakris GL (2004) Comparison of commonly used assays for the detection of microalbuminuria. J Clin Hypertens (Greenwich) 6:8–12. https://doi.org/10.1111/j.1524-6175.2004.04237.x

    Article  CAS  PubMed  Google Scholar 

  5. Xu JF, Yang YS, Jiang AQ, Zhu HL (2022) Detection methods and research progress of human serum albumin. Crit Rev Anal Chem 52:72–92. https://doi.org/10.1080/10408347.2020.1789835

    Article  CAS  PubMed  Google Scholar 

  6. Aitekenov S, Gaipov A, Bukasov R (2021) Review: detection and quantification of proteins in human urine. Talanta 223:121718. https://doi.org/10.1016/j.talanta.2020.121718

    Article  CAS  PubMed  Google Scholar 

  7. Kholafazad-Kordasht H, Hasanzadeh M, Seidi F (2021) Smartphone based immunosensors as next generation of healthcare tools: technical and analytical overview towards improvement of personalized medicine. TrAC - Trends Anal Chem 145:116455. https://doi.org/10.1016/j.trac.2021.116455

    Article  CAS  Google Scholar 

  8. Aydin EB, Aydin M, Sezgintürk MK (2019) Advances in electrochemical immunosensors. Adv Clin Chem 92:1–57. https://doi.org/10.1016/bs.acc.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  9. Omidfar K, Dehdast A, Zarei H et al (2011) Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron 26:4177–4183. https://doi.org/10.1016/j.bios.2011.04.022

    Article  CAS  PubMed  Google Scholar 

  10. Caballero D, Martinez E, Bausells J et al (2012) Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Anal Chim Acta 720:43–48. https://doi.org/10.1016/j.aca.2012.01.031

    Article  CAS  PubMed  Google Scholar 

  11. Arkan E, Saber R, Karimi Z et al (2014) Multiwall carbon nanotube-ionic liquid electrode modified with gold nanoparticles as a base for preparation of a novel impedimetric immunosensor for low level detection of human serum albumin in biological fluids. J Pharm Biomed Anal 92:74–81. https://doi.org/10.1016/j.jpba.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  12. Tsai JZ, Chen CJ, Settu K et al (2016) Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosens Bioelectron 77:1175–1182. https://doi.org/10.1016/j.bios.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  13. Shaikh MO, Zhu PY, Wang CC et al (2019) Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care. Biosens Bioelectron 126:572–580. https://doi.org/10.1016/j.bios.2018.11.035

    Article  CAS  PubMed  Google Scholar 

  14. Shaikh MO, Srikanth B, Zhu PY, Chuang CH (2018) Electrochemical immunosensor using polyaniline/gold nanocrystals for point of care detection of chronic kidney disease. 22nd Int Conf Miniaturized Syst Chem Life Sci MicroTAS 2018 2:863–864. http://toc.proceedings.com/51507webtoc.pdf

  15. Stanković V, Đurđić S, Ognjanović M et al (2020) Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. J Electroanal Chem 860:113928. https://doi.org/10.1016/j.jelechem.2020.113928

    Article  CAS  Google Scholar 

  16. Choosang J, Thavarungkul P, Kanatharana P, Numnuam A (2020) AuNPs/PpPD/PEDOT:PSS-Fc modified screen-printed carbon electrode label-free immunosensor for sensitive and selective determination of human serum albumin. Microchem J 155:104709. https://doi.org/10.1016/j.microc.2020.104709

    Article  CAS  Google Scholar 

  17. Jia Y, Liu G, Xu G et al (2022) Battery-free and wireless tag for in situ sensing of urinary albumin/creatinine ratio (ACR) for the assessment of albuminuria. Sensors Actuators B Chem 367:132050. https://doi.org/10.1016/j.snb.2022.132050

    Article  CAS  Google Scholar 

  18. Prodromidis MI (2010) Impedimetric immunosensors—a review. Electrochim Acta 55:4227–4233. https://doi.org/10.1016/j.electacta.2009.01.081

    Article  CAS  Google Scholar 

  19. Leva-Bueno J, Peyman SA, Millner PA (2020) A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol 209:343–362. https://doi.org/10.1007/s00430-020-00668-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Byakodi M, Shrikrishna NS, Sharma R et al (2022) Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. Biosens Bioelectron X 12:100284. https://doi.org/10.1016/j.biosx.2022.100284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. García-Carmona L, González MC, Escarpa A (2019) Nanomaterial-based electrochemical (bio)-sensing: one step ahead in diagnostic and monitoring of metabolic rare diseases. TrAC - Trends Anal Chem 118:29–42. https://doi.org/10.1016/j.trac.2019.05.020

    Article  CAS  Google Scholar 

  22. Samadi M, Sarikhani N, Zirak M et al (2018) Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons 3:90–204. https://doi.org/10.1039/c7nh00137a

    Article  CAS  PubMed  Google Scholar 

  23. Tajik S, Dourandish Z, GarkaniNejad F et al (2022) Transition metal dichalcogenides: synthesis and use in the development of electrochemical sensors and biosensors. Biosens Bioelectron 216:114674. https://doi.org/10.1016/j.bios.2022.114674

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Mei L, Cao X et al (2020) Intercalation and exfoliation chemistries of transition metal dichalcogenides. J Mater Chem A 8:15417–15444. https://doi.org/10.1039/d0ta03727c

    Article  CAS  Google Scholar 

  25. Backes C, Higgins TM, Kelly A et al (2017) Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater 29:243–255. https://doi.org/10.1021/acs.chemmater.6b03335

    Article  CAS  Google Scholar 

  26. Rojas D, Della Pelle F, Silveri F et al (2022) Phenolic compounds as redox-active exfoliation agents for group VI transition metal dichalcogenides. Mater Today Chem 26:101122. https://doi.org/10.1016/j.mtchem.2022.101122

    Article  CAS  Google Scholar 

  27. Singh Rana D, Thakur N, Singh D, Sonia P (2022) Molybdenum and tungsten disulfide based nanocomposites as chemical sensor: a review. Mater Today Proc 62:2755–2761. https://doi.org/10.1016/j.matpr.2022.01.147

    Article  CAS  Google Scholar 

  28. Della Pelle F, Rojas D, Silveri F et al (2020) Class-selective voltammetric determination of hydroxycinnamic acids structural analogs using a WS2/catechin-capped AuNPs/carbon black–based nanocomposite sensor. Microchim Acta 187:1–13. https://doi.org/10.1007/s00604-020-04281-z

    Article  CAS  Google Scholar 

  29. Fiori S, Della F, Silveri F et al (2023) Chemosphere nanofibrillar biochar from industrial waste as hosting network for transition metal dichalcogenides. Novel sustainable 1D / 2D nanocomposites for electrochemical sensing. Chemosphere 317:137. https://doi.org/10.1016/j.chemosphere.2023.137884

    Article  CAS  Google Scholar 

  30. Yagati AK, Go A, Vu NH, Lee MH (2020) A MoS2–Au nanoparticle-modified immunosensor for T3 biomarker detection in clinical serum samples. Electrochim Acta 342:136065. https://doi.org/10.1016/j.electacta.2020.136065

    Article  CAS  Google Scholar 

  31. Hu Y, Huang Y, Wang Z et al (2018) Gold/WS 2 nanocomposites fabricated by in-situ ultrasonication and assembling for photoelectrochemical immunosensing of carcinoembryonic antigen. Microchim Acta 185:1–8. https://doi.org/10.1007/s00604-018-3100-3

    Article  CAS  Google Scholar 

  32. Hong G, Chen R, Xu L et al (2020) One-pot ultrasonic synthesis of multifunctional Au nanoparticle-ferrocene-WS2 nanosheet composite for the construction of an electrochemical biosensing platform. Anal Chim Acta 1099:52–59. https://doi.org/10.1016/j.aca.2019.11.038

    Article  CAS  PubMed  Google Scholar 

  33. Roy A, Kalita P, Mondal B (2023) Structural, spectroscopic and electrical properties of liquid phase exfoliated few layered two-dimensional tungsten disulfide (WS2) using anionic surfactant. J Mater Sci Mater Electron 34:1–14. https://doi.org/10.1007/s10854-022-09687-4

    Article  CAS  Google Scholar 

  34. Hsieh MY, Huang PJ (2022) Magnetic nanoprobes for rapid detection of copper ion in aqueous environment by surface-enhanced Raman spectroscopy. RSC Adv 12:921–928. https://doi.org/10.1039/d1ra07482b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun Y, Wang Y, Chen JYC et al (2020) Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nat Chem 12:284–293. https://doi.org/10.1038/s41557-020-0418-3

    Article  CAS  PubMed  Google Scholar 

  36. Silveri F, Della PF, Scroccarello A et al (2022) Carbon black functionalized with naturally occurring compounds in water phase for electrochemical sensing of antioxidant compounds. Antioxidants 11:2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blandón-Naranjo L, Della Pelle F, Vázquez MV et al (2018) Electrochemical behaviour of microwave-assisted oxidized MWCNTs based disposable electrodes: proposal of a NADH electrochemical sensor. Electroanalysis 30:509–516. https://doi.org/10.1002/elan.201700674

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2002) Electrochemical methods: fundamentals and applications. Russ J Electrochem 38:1364–1365

    Article  Google Scholar 

  39. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  CAS  Google Scholar 

  40. Sopoušek J, Věžník J, Houser J et al (2021) Crucial factors governing the electrochemical impedance on protein-modified surfaces. Electrochim Acta 388:138616. https://doi.org/10.1016/j.electacta.2021.138616

    Article  CAS  Google Scholar 

  41. Gukowsky JC, Tan C, Han Z, He L (2018) Cysteamine-modified gold nanoparticles as a colorimetric sensor for the rapid detection of gentamicin. J Food Sci 83:1631–1638. https://doi.org/10.1111/1750-3841.14179

    Article  CAS  PubMed  Google Scholar 

  42. Sun LJ, Qu L, Yang R et al (2019) Cysteamine functionalized MoS2 quantum dots inhibit amyloid aggregation. Int J Biol Macromol 128:870–876. https://doi.org/10.1016/j.ijbiomac.2019.01.212

    Article  CAS  PubMed  Google Scholar 

  43. Ionescu RE (2022) Use of cysteamine and glutaraldehyde chemicals for robust functionalization of substrates with protein biomarkers—an overview on the construction of biosensors with different transductions. Biosensors 12:581. https://doi.org/10.3390/bios12080581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Serafín V, Torrente-Rodríguez RM, González-Cortés A et al (2018) An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta 179:131–138. https://doi.org/10.1016/j.talanta.2017.10.063

    Article  CAS  PubMed  Google Scholar 

  45. Sarigul N, Korkmaz F, Kurultak İ (2019) A new artificial urine protocol to better imitate human urine. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-56693-4

    Article  CAS  Google Scholar 

  46. Lakshmi D, Whitcombe MJ, Davis F et al (2011) Electrochemical detection of uric acid in mixed and clinical samples: a review. Electroanalysis 23:305–320. https://doi.org/10.1002/elan.201000525

    Article  CAS  Google Scholar 

  47. Pisoschi AM, Pop A, Serban AI, Fafaneata C (2014) Electrochemical methods for ascorbic acid determination. Electrochim Acta 121:443–460. https://doi.org/10.1016/j.electacta.2013.12.127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge CF Nanobiotechnology and CF Cryo-electron microscopy and tomography of CIISB, Instruct-CZ Centre, supported by MEYS CR (LM2023042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dario Compagnone or Petr Skládal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 859 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveri, F., Obořilová, R., Máčala, J. et al. Impedimetric immunosensor for microalbuminuria based on a WS2/Au water-phase assembled nanocomposite. Microchim Acta 190, 306 (2023). https://doi.org/10.1007/s00604-023-05873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05873-1

Keywords

Navigation