Skip to main content

Advertisement

Log in

Diagnostic genosensor for detection of rotavirus based on HFGNs/MXene/PPY signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel genosensor was developed for rotavirus specific cDNA sequence detection. The genosensor was comprised of hierarchical flower-like gold nanostructures, MXene, and polypyrrole (HFGNs/MXene/PPY) nanocomposite as a signal amplification tag, specific antisense ssDNA oligonucleotide as a recognition bioelement, and methylene blue (MB) as a redox marker. The morphological and electrochemical features of the biosensor were first tested and optimized and the high performance of the platform was confirmed in terms of sensitivity and reproducibility. Then, 20 rotavirus RNA isolated from clinical and cell-cultured samples (10 positive and 10 negative confirmed by RT-PCR and electrophoresis methods) were evaluated by the genosensor. The analysis results revealed that the genosensor is able to differentiate successfully between the positive and negative control groups. The developed genosensor for rotavirus RNA detection presented an excellent limit of detection of ∼ 0.8 aM and a determination  range of  10−18 and 10−7 M. In addition, the ssDNA/HFGNs/MXene/PPY/GCE showed high selectivity and long-term stability of ~ 24 days. Therefore, this novel genosensor would be of great benefit for the clinical diagnosis of rotavirus.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azaran A, Makvandi M, Teimoori A, Ebrahimi S, Heydari F, Nikfar R (2018) Distribution of rotavirus genotypes circulating in Ahvaz, Iran in 2016. Iran Biomed J 22(2):107

    PubMed  PubMed Central  Google Scholar 

  2. Jalilian S, Teimoori A, Makvandi M (2019) In silico characterization of epitopes from human rotavirus VP7 genotype G9 design for vaccine development. Iran J Allerg Asthm Immunol 8(6):664–70

  3. Du Y, Chen C, Zhang X, Yan D, Jiang D, Liu X et al (2022) Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: an observational trend study. Virol J 19(1):166

    Article  PubMed  PubMed Central  Google Scholar 

  4. Castro LR, Calvet FC, Sousa KL, Silva VP, Lobo PS, Penha ET et al (2019) Prevalence of rotavirus and human bocavirus in immunosuppressed individuals after renal transplantation in the Northern Region of Brazil. J Med Virol 91(12):2125–2133

    Article  CAS  PubMed  Google Scholar 

  5. Teimoori A, Soleimanjahi H, Makvandi M (2014) Characterization and transferring of human rotavirus double-layered particles in MA104 cells. Jundishapur. J Microbiol 7(6):1–5. e10375. https://doi.org/10.5812/jjm.10375

  6. Gómara MI, Green J, Gray J (2000) Methods of rotavirus detection, sero-and genotyping, sequencing, and phylogenetic analysis. Springer, Rotaviruses, pp 189–216

    Google Scholar 

  7. Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M et al (2017) Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends Anal Chem 97:445–457

    Article  CAS  Google Scholar 

  8. Hatamluyi B, Rezayi M, Amel Jamehdar S, Rizi KS, Mojarrad M, Meshkat Z et al (2022) Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens Bioelectr 207:114209

    Article  CAS  Google Scholar 

  9. da Fonseca AR, Franco DL, Cordeiro MT, de Oliveira EM, Fireman Dutra RA, Sotomayor DPT, M. (2019) Novel electrochemical genosensor for Zika virus based on a poly-(3-amino-4-hydroxybenzoic acid)-modified pencil carbon graphite electrode. Sens Actuators B: Chem 296:126681

    Article  Google Scholar 

  10. Carinelli S, Kühnemund M, Nilsson M, Pividori MI (2017) Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification. Biosens Bioelectr 93:65–71

    Article  CAS  Google Scholar 

  11. Ahangar LE, Mehrgardi MA (2017) Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform. Bioelectrochem (Amsterdam, Netherlands) 117:83–88

    Article  CAS  Google Scholar 

  12. Jia Z, Ma Y, Yang L, Guo C, Zhou N, Wang M et al (2019) NiCo2O4 spinel embedded with carbon nanotubes derived from bimetallic NiCo metal-organic framework for the ultrasensitive detection of human immune deficiency virus-1 gene. Biosens Bioelectr 133:55–63

    Article  CAS  Google Scholar 

  13. Hatamluyi B, Sadeghian R, Sany SBT, Alipourfard I, Rezayi M (2021) Dual-signaling electrochemical ratiometric strategy for simultaneous quantification of anticancer drugs. Talanta 234:122662

    Article  CAS  PubMed  Google Scholar 

  14. Pilan L (2021) Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochem (Amsterdam, Netherlands) 138:107697

    Article  CAS  Google Scholar 

  15. Soundiraraju B, George BK (2017) Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11(9):8892–8900

    Article  CAS  PubMed  Google Scholar 

  16. Tahir K, Maile N, Ghani AA, Kim B, Jang J, Lee DS (2022) Development of a three-dimensional macroporous sponge biocathode coated with carbon nanotube–MXene composite for high-performance microbial electrosynthesis systems. Bioelectrochem(Amsterdam, Netherlands) 146:108140

    Article  CAS  Google Scholar 

  17. Wang O, Jia X, Liu J, Sun M, Wu J (2022) Rapid and simple preparation of an MXene/polypyrrole-based bacteria imprinted sensor for ultrasensitive Salmonella detection. J Electroanal Chem 918:116513

    Article  CAS  Google Scholar 

  18. Sakthivel R, Lin L-Y, Lee T-H, Liu X, He J-H, Chung R-J (2022) Disposable and cost-effective label-free electrochemical immunosensor for prolactin based on bismuth sulfide nanorods with polypyrrole. Bioelectrochem (Amsterdam, Netherlands) 143:107948

    Article  CAS  Google Scholar 

  19. Tran VV, Tran NHT, Hwang HS, Chang M (2021) Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: potential for rapid COVID-19 detection. Biosens Bioelectr 182:113192

    Article  CAS  Google Scholar 

  20. Sun X, Sun J, Ye Y, Ji J, Sheng L, Yang D et al (2023) Metabolic pathway-based self-assembled Au@MXene liver microsome electrochemical biosensor for rapid screening of aflatoxin B1. Bioelectrochemistry (Amsterdam, Netherlands) 151:108378

  21. Wang F, Yang C, Duan M, Tang Y, Zhu J (2015) TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectr 74:1022–1028

    Article  CAS  Google Scholar 

  22. Ge L, Li B, Xu H, Pu W, Kwok HF (2019) Backfilling rolling cycle amplification with enzyme-DNA conjugates on antibody for portable electrochemical immunoassay with glucometer readout. Biosens Bioelectr 132:210–216

    Article  CAS  Google Scholar 

  23. Yang X, Feng M, Xia J, Zhang F, Wang Z (2020) An electrochemical biosensor based on AuNPs/Ti3C2 MXene three-dimensional nanocomposite for microRNA-155 detection by exonuclease III-aided cascade target recycling. J Electroanal Chem 878:114669

    Article  CAS  Google Scholar 

  24. Salimiyan Rizi K, Hatamluyi B, Darroudi M, Meshkat Z, Aryan E, Soleimanpour S et al (2022) PCR-free electrochemical genosensor for Mycobacterium tuberculosis complex detection based on two-dimensional Ti3C2 Mxene-polypyrrole signal amplification. Microchem J 179:107467

    Article  CAS  Google Scholar 

  25. Vaghasiya JV, Mayorga-Martinez CC, Sofer Z, Pumera M (2020) MXene-based flexible supercapacitors: influence of an organic ionic conductor electrolyte on the performance. ACS Appl Mater Inter 12(47):53039–53048

    Article  CAS  Google Scholar 

  26. Zare H, Meshkat Z, Hatamluyi B, Rezayi M, Ghazvini K, Derakhshan M et al (2022) The first diagnostic test for specific detection of Mycobacterium simiae using an electrochemical label-free DNA nanobiosensor. Talanta 238:123049

    Article  CAS  PubMed  Google Scholar 

  27. Rizi KS, Hatamluyi B, Rezayi M, Meshkat Z, Sankian M, Ghazvini K et al (2021) Response surface methodology optimized electrochemical DNA biosensor based on HAPNPTs/PPY/MWCNTs nanocomposite for detecting Mycobacterium tuberculosis. Talanta 226:122099

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by (1) Faculty of Medical Sciences, Tarbiat Modares University of Tehran (Grant No. 86258), (2) The Deputy of Research, Mashhad University of Medical Sciences (Grant No. 4002031), Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hoorieh Soleimanjahi or Zahra Meshkat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 616 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketabi, K., Soleimanjahi, H., Teimoori, A. et al. Diagnostic genosensor for detection of rotavirus based on HFGNs/MXene/PPY signal amplification. Microchim Acta 190, 293 (2023). https://doi.org/10.1007/s00604-023-05871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05871-3

Keywords

Navigation