Skip to main content
Log in

Electrochemically reduced graphene oxide films from Zn-C battery waste for the electrochemical determination of paracetamol and hydroquinone

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Contributing to the development of sustainable electroanalytical chemistry, electrochemically reduced graphene oxide (ERGO) films obtained from residual graphite of discharged Zn-C batteries are proposed in this work. Graphite from the cathode of discarded Zn-C batteries was recovered and used in the synthesis of graphene oxide (GO) by the modified Hummer’s method. The quality of the synthesized GO was verified using different characterization methods (FT-IR, XRD, SEM, and TEM). GO films were deposited on a glassy carbon electrode (GCE) by the drop coating method and then electrochemically reduced by cathodic potential scanning using cyclic voltammetry. The electrochemical features of the ERGO films were investigated using the ferricyanide redox probe, as well as paracetamol (PAR) and hydroquinone (HQ) molecules as model analytes. From the cyclic voltammetry assays, enhanced heterogeneous electron transfer rate constants (k0) were observed for all redox systems studied. In analytical terms, the ERGO-based electrode showed higher analytical sensitivity than the bare and GO-modified GCE. Using differential pulse voltammetry, wide linear response ranges and limits of detection of 0.14 μmol L−1 and 0.65 μmol L−1 were achieved for PAR and HQ, respectively. Furthermore, the proposed sensor was successfully applied to the determination of PAR and HQ in synthetic urine and tap water samples (recoveries close to 100%). The outstanding electrochemical and analytical properties of the proposed ERGO films are added to the very low cost of the raw material, being presented as a green-based alternative for the development of electrochemical (bio)sensors with unsophisticated resources.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tran HP, Schaubroeck T, Swart P et al (2018) Recycling portable alkaline/ZnC batteries for a circular economy: An assessment of natural resource consumption from a life cycle and criticality perspective. Resour Conserv Recycl 135:265–278. https://doi.org/10.1016/j.resconrec.2017.08.018

    Article  Google Scholar 

  2. Kumar N, Abubakar Sadique M, Khan R (2021) Electrochemical exfoliation of graphene quantum dots from waste dry cell battery for biosensor applications. Mater Lett 305:130829. https://doi.org/10.1016/j.matlet.2021.130829

    Article  CAS  Google Scholar 

  3. Azam MG, Kabir MH, Shaikh MAA et al (2022) A rapid and efficient adsorptive removal of lead from water using graphene oxide prepared from waste dry cell battery. J Water Process Eng 46:102597. https://doi.org/10.1016/j.jwpe.2022.102597

    Article  Google Scholar 

  4. da Silva AD, Paschoalino WJ, Damasceno JPV, Kubota LT (2020) Structure, Properties, and Electrochemical Sensing Applications of Graphene-Based Materials. Chem Electro Chem 7:4508–4525. https://doi.org/10.1002/celc.202001168

    Article  CAS  Google Scholar 

  5. Ramya M, Senthil Kumar P, Rangasamy G et al (2022) A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. Chemosphere 308:136416. https://doi.org/10.1016/j.chemosphere.2022.136416

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Guo H, Xue R et al (2020) In-situ facile synthesis of flower shaped NiS2@regenerative graphene oxide derived from waste dry battery nano-composites for high-performance supercapacitors. J Energy Storage 31:101630. https://doi.org/10.1016/j.est.2020.101630

    Article  Google Scholar 

  7. Bandi S, Ravuri S, Peshwe DR, Srivastav AK (2019) Graphene from discharged dry cell battery electrodes. J Hazard Mater 366:358–369. https://doi.org/10.1016/j.jhazmat.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  8. Hummers WSJ, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  9. Guo H-L, Wang X-F, Qian Q-Y et al (2009) A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 3:2653–2659. https://doi.org/10.1021/nn900227d

    Article  CAS  PubMed  Google Scholar 

  10. Parham H, Zargar B (2001) Determination of isosorbide dinitrate in arterial plasma, synthetic serum and pharmaceutical formulations by linear sweep voltammetry on a gold electrode. Talanta 55:255–262. https://doi.org/10.1016/S0039-9140(01)00416-7

    Article  CAS  PubMed  Google Scholar 

  11. Stobinski L, Lesiak B, Malolepszy A et al (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectros Relat Phenomena 195:145–154. https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  12. Zhang L, Liang J, Huang Y et al (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon N Y 47:3365–3368. https://doi.org/10.1016/j.carbon.2009.07.045

    Article  CAS  Google Scholar 

  13. Zhao W, Kido G, Hara K, Noguchi H (2014) Characterization of neutralized graphite oxide and its use in electric double layer capacitors. J Electroanal Chem 712:185–193. https://doi.org/10.1016/j.jelechem.2013.11.007

    Article  CAS  Google Scholar 

  14. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved Synthesis of Graphene Oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  15. Rabia M, Hadia NMA, Farid OM et al (2022) Poly(m-toluidine)/rolled graphene oxide nanocomposite photocathode for hydrogen generation from wastewater. Int J Energy Res 46:11943–11956. https://doi.org/10.1002/er.7963

    Article  CAS  Google Scholar 

  16. Jankovský O, Jiříčková A, Luxa J et al (2017) Fast Synthesis of Highly Oxidized Graphene Oxide. ChemistrySelect 2:9000–9006. https://doi.org/10.1002/slct.201701784

    Article  CAS  Google Scholar 

  17. Caridad JM, Rossella F, Bellani V et al (2011) Automated detection and characterization of graphene and few-layer graphite via Raman spectroscopy. J Raman Spectrosc 42:286–293. https://doi.org/10.1002/jrs.2739

    Article  CAS  Google Scholar 

  18. Rattana T, Chaiyakun S, Witit-Anun N et al (2012) Preparation and characterization of graphene oxide nanosheets. Procedia Eng 32:759–764. https://doi.org/10.1016/j.proeng.2012.02.009

    Article  CAS  Google Scholar 

  19. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1–4. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  20. López-Díaz D, López Holgado M, García-Fierro JL, Velázquez MM (2017) Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide. J Phys Chem C 121:20489–20497. https://doi.org/10.1021/acs.jpcc.7b06236

    Article  CAS  Google Scholar 

  21. Ambrosi A, Pumera M (2016) Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications. Chem – A Eur J 22:153–159. https://doi.org/10.1002/chem.201503110

    Article  CAS  Google Scholar 

  22. Zhang Z, Yan J, Jin H, Yin J (2014) Tuning the reduction extent of electrochemically reduced graphene oxide electrode film to enhance its detection limit for voltammetric analysis. Electrochim Acta 139:232–237. https://doi.org/10.1016/j.electacta.2014.06.159

    Article  CAS  Google Scholar 

  23. Raj MA, John SA (2013) Fabrication of Electrochemically Reduced Graphene Oxide Films on Glassy Carbon Electrode by Self-Assembly Method and Their Electrocatalytic Application. J Phys Chem C 117:4326–4335. https://doi.org/10.1021/jp400066z

    Article  CAS  Google Scholar 

  24. Chen P, McCreery RL (1996) Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification. Anal Chem 68:3958–3965. https://doi.org/10.1021/ac960492r

    Article  CAS  Google Scholar 

  25. Ambrosi A, Pumera M (2013) Precise Tuning of Surface Composition and Electron-Transfer Properties of Graphene Oxide Films through Electroreduction. Chem – A Eur J 19:4748–4753. https://doi.org/10.1002/chem.201204226

    Article  CAS  Google Scholar 

  26. Ambrosi A, Chua CK, Latiff NM et al (2016) Graphene and its electrochemistry – an update. Chem Soc Rev 45:2458–2493. https://doi.org/10.1039/C6CS00136J

    Article  PubMed  Google Scholar 

  27. Moo JGS, Ambrosi A, Bonanni A, Pumera M (2012) Inherent Electrochemistry and Activation of Chemically Modified Graphenes for Electrochemical Applications. Chem – An Asian J 7:759–770. https://doi.org/10.1002/asia.201100852

    Article  CAS  Google Scholar 

  28. Pumera M (2013) Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochem commun 36:14–18. https://doi.org/10.1016/j.elecom.2013.08.028

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner L (2001) Electrochemical Methods - Fundamental and Applications, 2nd edn, New York

  30. Nicholson RS, Shain I (1964) Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal Chem 36:706–723. https://doi.org/10.1021/ac60210a007

    Article  CAS  Google Scholar 

  31. Lavagnini I, Antiochia R, Magno F (2004) An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data. Electroanalysis 16:505–506. https://doi.org/10.1002/elan.200302851

    Article  CAS  Google Scholar 

  32. Silva TA, Zanin H, May PW et al (2014) Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors. ACS Appl Mater Interfaces 6. https://doi.org/10.1021/am505928j

  33. Patel M, Bisht N, Prabhakar P et al (2023) Ternary nanocomposite-based smart sensor: Reduced graphene oxide/polydopamine/alanine nanocomposite for simultaneous electrochemical detection of Cd2+, Pb2+, Fe2+, and Cu2+ ions. Environ Res 221:115317. https://doi.org/10.1016/j.envres.2023.115317

    Article  CAS  PubMed  Google Scholar 

  34. Huang J, Qiu Z, Lin J et al (2023) Ultrasensitive determination of metronidazole using flower-like cobalt anchored on reduced graphene oxide nanocomposite electrochemical sensor. Microchem J 188:108444. https://doi.org/10.1016/j.microc.2023.108444

    Article  CAS  Google Scholar 

  35. Naik TSSK, Swamy BEK, Ramamurthy PC, Chetankumar K (2020) Poly (L-leucine) modified carbon paste electrode as an electrochemical sensor for the detection of paracetamol in presence of folic acid. Mater Sci Energy Technol 3:626–632. https://doi.org/10.1016/j.mset.2020.07.003

    Article  CAS  Google Scholar 

  36. Mangaiyarkarasi R, Premlatha S, Khan R et al (2020) Electrochemical performance of a new imidazolium ionic liquid crystal and carbon paste composite electrode for the sensitive detection of paracetamol. J Mol Liq 319:114255. https://doi.org/10.1016/j.molliq.2020.114255

    Article  CAS  Google Scholar 

  37. Liu B, Guo H, Sun L et al (2022) Electrochemical sensor based on covalent organic frameworks/MWCNT for simultaneous detection of catechol and hydroquinone. Colloids Surfaces A Physicochem Eng Asp 639:128335. https://doi.org/10.1016/j.colsurfa.2022.128335

    Article  CAS  Google Scholar 

  38. Yang X, He C, Lin W et al (2022) Electrochemical sensors for hydroquinone and catechol based on nano-flake graphite and activated carbon sensitive materials. Synth Met 287:117079. https://doi.org/10.1016/j.synthmet.2022.117079

    Article  CAS  Google Scholar 

  39. Maciel CC, de Lima LF, Ferreira AL et al (2022) Development of a flexible and disposable electrochemical sensor based on poly (butylene adipate-co-terephthalate) and graphite for hydroquinone sensing. Sensors and Actuators Reports 4:100091. https://doi.org/10.1016/j.snr.2022.100091

    Article  Google Scholar 

  40. Wang C, Li C, Wang F, Wang C (2006) Covalent Modification of Glassy Carbon Electrode with L-Cysteine for the Determination of Acetaminophen. Microchim Acta 155:365–371. https://doi.org/10.1007/s00604-006-0616-8

    Article  CAS  Google Scholar 

  41. Peng J, Gao Z-N (2006) Influence of micelles on the electrochemical behaviors of catechol and hydroquinone and their simultaneous determination. Anal Bioanal Chem 384:1525–1532. https://doi.org/10.1007/s00216-006-0329-1

    Article  CAS  PubMed  Google Scholar 

  42. Manoj D, Rajendran S, Hoang TKA et al (2022) In-situ growth of 3D Cu-MOF on 1D halloysite nanotubes/reduced graphene oxide nanocomposite for simultaneous sensing of dopamine and paracetamol. J Ind Eng Chem 112:287–295. https://doi.org/10.1016/j.jiec.2022.05.022

    Article  CAS  Google Scholar 

  43. Kader Mohiuddin A, Shamsuddin Ahmed M, Jeon S (2022) Palladium doped α-MnO2 nanorods on graphene as an electrochemical sensor for simultaneous determination of dopamine and paracetamol. Appl Surf Sci 578:152090. https://doi.org/10.1016/j.apsusc.2021.152090

    Article  CAS  Google Scholar 

  44. Haridas V, Yaakob Z, K RN et al (2021) Selective electrochemical determination of paracetamol using hematite/graphene nanocomposite modified electrode prepared in a green chemical route. Mater Chem Phys 263:124379. https://doi.org/10.1016/j.matchemphys.2021.124379

  45. Luo Y, Yang Y, Wang L et al (2022) An ultrafine ZnO/ZnNi2O4@porous carbon@covalent-organic framework for electrochemical detection of paracetamol and tert-butyl hydroquinone. J Alloys Compd 906:164369. https://doi.org/10.1016/j.jallcom.2022.164369

    Article  CAS  Google Scholar 

  46. Kusuma KB, Manju M, Ravikumar CR et al (2022) Photocatalytic degradation of Methylene Blue and electrochemical sensing of paracetamol using Cerium oxide nanoparticles synthesized via sonochemical route. Appl Surf Sci Adv 11:100304. https://doi.org/10.1016/j.apsadv.2022.100304

    Article  Google Scholar 

  47. Shalauddin M, Akhter S, Basirun WJ et al (2022) Carboxylated nanocellulose dispersed nitrogen doped graphene nanosheets and sodium dodecyl sulfate modified electrochemical sensor for the simultaneous determination of paracetamol and naproxen sodium. Measurement 194:110961. https://doi.org/10.1016/j.measurement.2022.110961

    Article  Google Scholar 

  48. Leve ZD, Jahed N, Sanga NA et al (2022) Determination of Paracetamol on Electrochemically Reduced Graphene Oxide–Antimony Nanocomposite Modified Pencil Graphite Electrode Using Adsorptive Stripping Differential Pulse Voltammetry. Sensors 22:5784. https://doi.org/10.3390/s22155784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Farag AS (2022) Voltammetric determination of acetaminophen in pharmaceutical preparations and human urine using glassy carbon paste electrode modified with reduced graphene oxide. Anal Sci 38:1213–1220. https://doi.org/10.1007/s44211-022-00150-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Han H, Liu C, Sha J et al (2021) Ferrocene-reduced graphene oxide-polyoxometalates based ternary nanocomposites as electrochemical detection for acetaminophen. Talanta 235:122751. https://doi.org/10.1016/j.talanta.2021.122751

    Article  CAS  PubMed  Google Scholar 

  51. Karuppusamy N, Mariyappan V, Chen SM et al (2023) Unveiling electrocatalytic performance of MnCo-P on sulfur-doped reduced graphene oxide for electrochemical detection of acetaminophen. Surf Interfaces 37:102681. https://doi.org/10.1016/j.surfin.2023.102681

    Article  CAS  Google Scholar 

  52. Demir N, Atacan K, Ozmen M, Bas SZ (2020) Design of a new electrochemical sensing system based on MoS 2 –TiO 2 /reduced graphene oxide nanocomposite for the detection of paracetamol. New J Chem 44:11759–11767. https://doi.org/10.1039/D0NJ02298E

    Article  CAS  Google Scholar 

  53. Chuenjitt S, Kongsuwan A, Phua CH et al (2022) A poly(neutral red)/porous graphene modified electrode for a voltammetric hydroquinone sensor. Electrochim Acta 434:141272. https://doi.org/10.1016/j.electacta.2022.141272

    Article  CAS  Google Scholar 

  54. Wang C, Zhao P, Zhang L et al (2022) Switched electrochemical sensor for hydroquinone based on rGO@Au, monoclinic BiVO4 and temperature-sensitive polymer composite material. Microchem J 179:107412. https://doi.org/10.1016/j.microc.2022.107412

    Article  CAS  Google Scholar 

  55. Al-Shekaili A, Al-Shukaili W, Khudaish EA (2022) A surface network based on oxidative graphene oxide for the determination of hydroquinone and catechol in ground and wastewater samples. J Electroanal Chem 919:116509. https://doi.org/10.1016/j.jelechem.2022.116509

    Article  CAS  Google Scholar 

  56. Xia Y, Wang K, Shi Y et al (2021) Reduced graphene oxide cross-linked L-cysteine modified glassy carbon electrode for detection of environmental pollutant of hydroquinone. FlatChem 25:100214. https://doi.org/10.1016/j.flatc.2020.100214

    Article  CAS  Google Scholar 

  57. Huang L, Cao Y, Diao D (2020) Electrochemical activation of graphene sheets embedded carbon films for high sensitivity simultaneous determination of hydroquinone, catechol and resorcinol. Sensors Actuators B Chem 305:127495. https://doi.org/10.1016/j.snb.2019.127495

    Article  CAS  Google Scholar 

  58. Fan Z-C, Li Z, Wei X-Y et al (2022) Longquan lignite-derived hierarchical porous carbon electrochemical sensor for simultaneous detection of hazardous catechol and hydroquinone in environmental water samples. Microchem J 182:107880. https://doi.org/10.1016/j.microc.2022.107880

    Article  CAS  Google Scholar 

  59. Park J, Kim J, Min A, Choi MY (2022) Fabrication of nonenzymatic electrochemical sensor based on Zn@ZnO core-shell structures obtained via pulsed laser ablation for selective determination of hydroquinone. Environ Res 204:112340. https://doi.org/10.1016/j.envres.2021.112340

    Article  CAS  PubMed  Google Scholar 

  60. Chetankumar K, Kumara Swamy BE, Sharma SC (2020) Electrochemical preparation of poly (direct yellow 11) modified pencil graphite electrode sensor for catechol and hydroquinone in presence of resorcinol: A voltammetric study. Microchem J 156:104979. https://doi.org/10.1016/j.microc.2020.104979

    Article  CAS  Google Scholar 

  61. Jahani PM, Nejad FG, Dourandish Z et al (2022) A modified carbon paste electrode with N-rGO/CuO nanocomposite and ionic liquid for the efficient and cheap voltammetric sensing of hydroquinone in water specimens. Chemosphere 302:134712. https://doi.org/10.1016/j.chemosphere.2022.134712

    Article  CAS  PubMed  Google Scholar 

  62. Yi Y, Fiston MN, Zhang D, Zhu G (2020) Nitrogen-Doped Carbon Black/Reduced Graphene Oxide Nanohybrids for Simultaneous Electrochemical Determination of Hydroquinone and Paracetamol. J Electrochem Soc 167:066510. https://doi.org/10.1149/1945-7111/ab80cc

    Article  CAS  Google Scholar 

  63. Meskher H, Achi F, Zouaoui A et al (2022) Simultaneous and Selective Electrochemical Determination of Catechol and Hydroquinone on A Nickel Oxide (NiO) Reduced Graphene Oxide (rGO) Doped Multiwalled Carbon Nanotube (fMWCNT) Modified Platinum Electrode. Anal Lett 55:1466–1481. https://doi.org/10.1080/00032719.2021.2008951

    Article  CAS  Google Scholar 

  64. Chang F, Wang H, He S et al (2021) Simultaneous determination of hydroquinone and catechol by a reduced graphene oxide–polydopamine–carboxylated multi-walled carbon nanotube nanocomposite. RSC Adv 11:31950–31958. https://doi.org/10.1039/D1RA06032E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rajeswari B, Sravani B, Cheffena M et al (2023) Ethylene glycol-assisted synthesis of reduced graphene oxide-supported bimetallic Pt-Co nanoparticles for the ultra-sensitive detection of tert-butyl hydroquinone. Inorg Chem Commun 151:110627. https://doi.org/10.1016/j.inoche.2023.110627

    Article  CAS  Google Scholar 

  66. Liao L, Zhou P, Xiao F et al (2023) Electrochemical sensor based on Ni/N-doped graphene oxide for the determination of hydroquinone and catechol. Ionics (Kiel) 29:1605–1615. https://doi.org/10.1007/s11581-023-04892-5

    Article  CAS  Google Scholar 

  67. Rocha DP, Dornellas RM, Cardoso RM et al (2018) Chemically versus electrochemically reduced graphene oxide: Improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces. Sensors Actuators B Chem 254:701–708. https://doi.org/10.1016/j.snb.2017.07.070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to UFV/DEQ for the infrastructure.

Funding

This work received financial support from CAPES, CNPq, and FAPEMIG (Grant Numbers: RED-00144-22, APQ-0008321, and APQ-03113-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Almeida Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 464 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.M., Sperandio, G.H., da Silva, A.D. et al. Electrochemically reduced graphene oxide films from Zn-C battery waste for the electrochemical determination of paracetamol and hydroquinone. Microchim Acta 190, 273 (2023). https://doi.org/10.1007/s00604-023-05858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05858-0

Keywords

Navigation