Skip to main content
Log in

Conductive and self-healing hydrogel for flexible electrochemiluminescence sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A flexible electrochemiluminescence (ECL) hydrogel sensor exhibiting good self-healing was constructed. A transparent self-healing oxidized sodium alginate/hydrazide polyethylene glycol (OSA/PEG-DH) hydrogel was prepared by crosslinking dynamic covalent acylhydrazone bond. The introduction of 4-amino-DL-phenylalanine, a catalyst with good biocompatibility, allows rapid gelation and self-healing of hydrogel under mild conditions. Using the hydrogel as the sensing substrate, the ionic liquid (IL) 2-hydroxy-N,N,N-trimethylethanaminium chloride and the luminescent reagent N-(aminobutyl)-N-(ethylisoluminol) (ABEI) were simultaneously immobilized in the OSA/PEG-DH hydrogel to obtain the ABEI/IL/OSA/PEG-DH hydrogel. The ABEI/IL/OSA/PEG-DH hydrogel can be directly used as a semi-solid electrolyte for constructing a flexible ECL hydrogel sensor for the detection of H2O2, which acted as a coreactant of ABEI. The prepared flexible ECL sensor showed good self-healing performance, can restore ECL signal intensity within 20 min after physical damage, and showed high accuracy in the analysis of complex serum samples. This research shed new light on the development of flexible ECL sensor for bioanalytical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Jin Z, Yang L, Shi S, Wang T, Duan G, Liu X, Li Y (2021) Flexible polydopamine bioelectronics. Adv Funct Mater 31(30):2103391

    Article  CAS  Google Scholar 

  2. Yu Y, Nyein HYY, Gao W, Javey A (2020) Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv Mater 32(15):1902083

    Article  CAS  Google Scholar 

  3. Wang Y, Xia Y, Xiang P, Dai Y, Gao Y, Xu H, Yu J, Gao G, Chen K (2022) Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chem Eng J 428:131171

    Article  CAS  Google Scholar 

  4. Kim J, Campbell AS, de Ávila BE-F, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37(4):389–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ying B, Chen RZ, Zuo R, Li J, Liu X (2021) An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv Funct Mater 31(42):2104665

    Article  CAS  Google Scholar 

  6. Phan H-P, Zhong Y, Nguyen T-K, Park Y, Dinh T, Song E, Vadivelu RK, Masud MK, Li J, Shiddiky MJA, Dao D, Yamauchi Y, Rogers JA, Nguyen N-T (2019) Long-Lived, Transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 13(10):11572–11581

    Article  CAS  PubMed  Google Scholar 

  7. Yoon J, Lee SN, Shin MK, Kim H-W, Choi HK, Lee T, Choi J-W (2019) Flexible electrochemical glucose biosensor based on GOx/gold/MoS2/gold nanofilm on the polymer electrode. Biosens Bioelectron 140:111343

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Liu Y, Ma Q (2019) Nanoparticle-based electrochemiluminescence cytosensors for single cell level detection, TrAC. Trends Anal Chem 110:277–292

    Article  CAS  Google Scholar 

  9. Fu Y, Ma Q (2020) Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications. Nanoscale 12(26):13879–13898

    Article  CAS  PubMed  Google Scholar 

  10. Chen M-M, Cheng S-B, Ji K, Gao J, Liu Y-L, Wen W, Zhang X, Wang S, Huang W-H (2019) Construction of a flexible electrochemiluminescence platform for sweat detection. Chem Sci 10(25):6295–6303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vu V-P, Sinh LH, Choa S-H (2020) Recent progress in self-healing materials for sensor arrays. ChemNanoMat 6(11):1522–1538

    Article  CAS  Google Scholar 

  12. Kang J, Tok JBH, Bao Z (2019) Self-healing soft electronics. Nat Electron 2(4):144–150

    Article  Google Scholar 

  13. Zhong R, Tang Q, Wang S, Zhang H, Zhang F, Xiao M, Man T, Qu X, Li L, Zhang W, Pei H (2018) Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv Mater 30(12):1706887

    Article  Google Scholar 

  14. Chakraborty P, Guterman T, Adadi N, Yadid M, Brosh T, Adler-Abramovich L, Dvir T, Gazit E (2018) A self-healing, all-organic, conducting, composite peptide hydrogel as pressure sensor and electrogenic cell soft substrate. ACS Nano 13(1):163–175

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiang X, Wang H, Yuan R, Chai Y (2018) Functional three-dimensional porous conductive polymer hydrogels for sensitive electrochemiluminescence in situ detection of H2O2 released from live cells. Anal Chem 90(14):8462–8469

    Article  CAS  PubMed  Google Scholar 

  16. Gao F, Teng H, Song J, Xu G, Luo X (2020) A flexible and highly sensitive nitrite sensor enabled by interconnected 3D porous polyaniline/carbon nanotube conductive hydrogels. Anal Methods 12(5):604–610

    Article  CAS  Google Scholar 

  17. Tang L, Wu S, Qu J, Gong L, Tang J (2020) A review of conductive hydrogel used in flexible strain sensor. Materials 13(18):3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu H, Zhang N, Ma M (2019) Electroconductive hydrogels for biomedical applications. WIREs Nanomed Nanobi 11(6):e1568

    Article  Google Scholar 

  19. Yu X, Zhang H, Wang Y, Fan X, Li Z, Zhang X, Liu T (2022) Highly stretchable, ultra-soft, and fast self-healable conductive hydrogels based on polyaniline nanoparticles for sensitive flexible sensors. Adv Funct Mater 32(33):2204366

    Article  CAS  Google Scholar 

  20. He X, Dong J, Zhang X, Bai X, Zhang C, Wei D (2022) Self-healing, anti-fatigue, antimicrobial ionic conductive hydrogels based on choline-amino acid polyionic liquids for multi-functional sensors. Chem Eng J 435:135168

    Article  CAS  Google Scholar 

  21. Li G, Li C, Li G, Yu D, Song Z, Wang H, Liu X, Liu H, Liu W (2022) Development of conductive hydrogels for fabricating flexible strain sensors. Small 18(5):2101518

    Article  CAS  Google Scholar 

  22. Han C, Guo W (2020) Fluorescent noble metal nanoclusters loaded protein hydrogel exhibiting anti-biofouling and self-healing properties for electrochemiluminescence biosensing applications. Small 16(45):2002621

    Article  CAS  Google Scholar 

  23. Ding C, Li Y, Wang L, Luo X (2019) Ratiometric electrogenerated chemiluminescence cytosensor based on conducting polymer hydrogel loaded with internal standard molecules. Anal Chem 91(1):983–989

    Article  CAS  PubMed  Google Scholar 

  24. Guo X, Li Y, Li Y, Ye Z, Zhang J, Zhu T, Li F (2020) An L012@ PAni-PAAm hydrogel composite based-electrochemiluminescence biosensor for in situ detection of H2O2 released from cardiomyocytes. Electrochim Acta 354:136763

    Article  CAS  Google Scholar 

  25. Liu Y, Hsu S-H (2018) Synthesis and biomedical applications of self-healing hydrogels. Front Chem 6(449):449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Xu T, Zhang X (2021) Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends Anal Chem 134:116130

    Article  CAS  Google Scholar 

  27. Chen J, Li S, Zhang Y, Wang W, Zhang X, Zhao Y, Wang Y, Bi H (2017) A reloadable self-healing hydrogel enabling diffusive transport of C-dots across gel–gel interface for scavenging reactive oxygen species. Adv Healthc Mater 6(21):1700746

    Article  Google Scholar 

  28. Yang X, Liu G, Peng L, Guo J, Tao L, Yuan J, Chang C, Wei Y, Zhang L (2017) Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv Funct Mater 27(40):1703174

    Article  Google Scholar 

  29. Cao L, Cao B, Lu C, Wang G, Yu L, Ding J (2015) An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B 3(7):1268–1280

    Article  CAS  PubMed  Google Scholar 

  30. Gomes JM, Silva SS, Reis RL (2019) Biocompatible ionic liquids: fundamental behaviours and applications. Chem Soc Rev 48(15):4317–4335

    Article  CAS  PubMed  Google Scholar 

  31. Barfidokht A, Mishra RK, Seenivasan R, Liu S, Hubble LJ, Wang J, Hall DA (2019) Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sens Actuators B Chem 296:126422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ciui B, Tertiş M, Cernat A, Săndulescu R, Wang J, Cristea C (2018) Finger-based printed sensors integrated on a glove for on-site screening of Pseudomonas aeruginosa virulence factors. Anal. Chem. 90(12):7761–7768

    Article  CAS  PubMed  Google Scholar 

  33. Zhang T, Xing Y, Song Y, Gu Y, Yan X, Lu N, Liu H, Xu Z, Xu H, Zhang Z (2019) Aupt/mof–graphene: a synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal Chem 91(16):10589–10595

    Article  CAS  PubMed  Google Scholar 

  34. Atta NF, Gawad SAA, Galal A, Razik AA, El-Gohary AR (2021) Efficient electrochemical sensor for determination of H2O2 in human serum based on nano iron-nickel alloy/carbon nanotubes/ionic liquid crystal composite. J Electroanal Chem 881:114953

    Article  CAS  Google Scholar 

  35. Fu M, Liang Y, Lv X, Li C, Yang YY, Yuan P, Ding X (2021) Recent advances in hydrogel-based anti-infective coatings. J Mater Sci Technol 85:169–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (201874005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Bai, Y., Zhao, X. et al. Conductive and self-healing hydrogel for flexible electrochemiluminescence sensor. Microchim Acta 190, 123 (2023). https://doi.org/10.1007/s00604-023-05706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05706-1

Keywords

Navigation