Skip to main content
Log in

Nickel hexacyanoferrate nanoparticle-decorated 3D rGO composites-based electrochemical sensing platform for detection of di-2-ethylhexyl phthalate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A label-free and efficient electrochemical (EC) sensing platform for di-2-ethylhexyl phthalate (DEHP) was developed based on in situ probe nickel hexacyanoferrate nanoparticle (NiHCF NP)-decorated three-dimensional reduced graphene oxide (3D rGO) composites. NiHCF NPs in the composites as an in situ probe show a pair of well-defined peaks with good reversibility and stability. Coupling 3D rGO with NiHCF NPs not only improved the electron transfer capability of NiHCF NPs but also provided more sites for aptamer immobilization. The synthesized NiHCF NP-decorated 3D rGO composites were used to act as a substrate for the immobilization of anti-DEHP aptamer by the covalent bonding method. The designed EC sensing platform displays excellent sensing performance for DEHP with a low detection limit of 3.64 pg/L, and a linear working range of 0.01 − 1000 ng/L. The application of the sensing platform to actual environmental samples was studied and satisfactory results were obtained. Thus, the proposed EC sensing platform would provide a potential tool for efficient detection of pollutants in the environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu H, Zhu JH, Cheng YX et al (2021) Functionalized UIO-66@Ag nanoparticles substrate for rapid and ultrasensitive SERS detection of di-(2-ethylhexyl) phthalate in plastics. Sens Actuators B 349:130793. https://doi.org/10.1016/j.snb.2021.130793

    Article  CAS  Google Scholar 

  2. Dai XY, Zhu SY, Chen J et al (2022) Role of toll-like receptor/MyD88 signaling in lycopene alleviated di-2-ethylhexyl phthalate (DEHP)-induced inflammatory response. J Agric Food Chem 70:10022–10030. https://doi.org/10.1021/acs.jafc.2c03864

    Article  CAS  PubMed  Google Scholar 

  3. Boaretti C, Donadini R, Roso M et al (2021) Transesterification of bis(2-ethylhexyl) phthalate for the recycling of flexible polyvinyl chloride scraps in the circular economy framework. Ind Eng Chem Res 60:17750–17760. https://doi.org/10.1021/acs.iecr.1c03639

    Article  CAS  Google Scholar 

  4. Chen Q, Du MJ, Xu XQ (2022) A label-free and selective electrochemical aptasensor for ultrasensitive detection of Di(2-ethylhexyl) phthalate based on self-assembled DNA nanostructure amplification. J Electroanal Chem 914:116300. https://doi.org/10.1016/j.jelechem.2022.116300

    Article  CAS  Google Scholar 

  5. Zota AR, Calafat AM, Woodruff TJ (2014) Temporal trends in phthalate exposures: findings from the national health and nutrition examination survey, 2001–2010. Environ Health Perspect 122:235–241. https://doi.org/10.1289/ehp.1306681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ge J, Guo K, Zhang C et al (2021) Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/I kappa B pathway in heart. Sci Total Environ 773:145442. https://doi.org/10.1016/j.scitotenv.2021.145442

    Article  CAS  PubMed  Google Scholar 

  7. Dai XY, Zhao Y, Ge J et al (2021) Lycopene attenuates di(2-ethylhexyl) phthalate-induced mitophagy in spleen by regulating the sirtuin3-mediated pathway. Food Funct 12:4582–4590. https://doi.org/10.1039/D0FO03277H

    Article  CAS  PubMed  Google Scholar 

  8. Tahmasebi E, Masoomi MY, Yaminia Y, Morsali A (2016) Application of a Zn (II) based metal-organic framework as an efficient solid-phase extraction sorbent for preconcentration of plasticizer compounds. RSC Adv 46:40211–40218. https://doi.org/10.1039/C6RA06560K

    Article  Google Scholar 

  9. Sargazi S, Mirzaei R, Rahmani M et al (2017) One-step in-syringe dispersive liquid-liquid microextraction an GC-FID determination of trace amounts of di(2-ethylhexyl) phthalate and its metabolite in human urine samples. J Anal Chem 72:557–561. https://doi.org/10.1134/S1061934817050100

    Article  CAS  Google Scholar 

  10. Ozer ET, Osman B, Yazici T (2017) Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water. J Chromatogr A 1500:53–60. https://doi.org/10.1016/j.chroma.2017.04.013

    Article  CAS  PubMed  Google Scholar 

  11. Xu YY, Weng R, Lu YS et al (2018) Evaluation of phthalic acid esters in fish samples using gas chromatography tandem mass spectrometry with simplified QuEChERS technique. Food Anal Methods 11:3293–3303. https://doi.org/10.1007/s12161-018-1313-z

    Article  Google Scholar 

  12. Makkliang F, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C (2017) A polypyrrole-chitosan cryogel stir-bead micro-solid phase extractor for the determination of phthalate esters in contact lenses storage solutions and in artificial saliva in contact with baby teethers. Anal Chim Acta 985:69–78. https://doi.org/10.1016/j.aca.2017.06.050

    Article  CAS  PubMed  Google Scholar 

  13. Cheng LD, Pan SH, Ding CY et al (2017) Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water. J Chromatogr A 1511:85–91. https://doi.org/10.1016/j.chroma.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  14. Sun RY, Zhuang HS (2014) A sensitive heterogeneous biotin-streptavidin enzyme-linked immunosorbent assay for the determination of di-2-ethylhexyl phthalate (DEHP) in beverages using a specific polyclonal antibody. Anal Methods 6:9807–9815. https://doi.org/10.1039/c4ay02088j

    Article  CAS  Google Scholar 

  15. Yang YY, Li YT, Zhai WL et al (2021) Electrokinetic preseparation and molecularly imprinted trapping for highly selective SERS detection of charged phthalate plasticizers. Anal Chem 93:946–955. https://doi.org/10.1021/acs.analchem.0c03652

    Article  CAS  PubMed  Google Scholar 

  16. Li HY, Li Q, Zhao SX et al (2022) Aptamer-target recognition-promoted ratiometric electrochemical strategy for evaluating the microcystin-LR residue in fish without interferences. J Agric Food Chem 70:680–686. https://doi.org/10.1021/acs.jafc.1c06476

    Article  CAS  PubMed  Google Scholar 

  17. Ranjan P, Sadique MA, Yadav S, Khan R (2022) An electrochemical immunosensor based on gold-graphene oxide nanocomposites with ionic liquid for detecting the breast cancer CD44 biomarker. ACS Appl Mater Interfaces 14:20802–20812. https://doi.org/10.1021/acsami.2c03905

    Article  CAS  PubMed  Google Scholar 

  18. Xiong SQ, Cheng JJ, He LL et al (2014) Detection of di (2-ethylhexyl) phthalate through graphene-beta-cyclodextrin composites by electrochemical impedance spectroscopy. Anal Methods 6:1736–1742. https://doi.org/10.1039/c3ay42039f

    Article  CAS  Google Scholar 

  19. Liu X, Liu P, Tang Y et al (2018) A photoelectrochemical aptasensor based on a 3D flower-like TiO2-MoS2-Gold nanoparticle heterostructure for detection of kanamycin. Biosens Bioelectron 112:193–201. https://doi.org/10.1016/j.bios.2018.04.041

    Article  CAS  PubMed  Google Scholar 

  20. Lim HJ, Kim AR, Yoon MY et al (2018) Development of quantum dot aptasensor and its portable analyzer for the detection of di-2-ethylhexyl phthalate. Biosens Bioelectron 121:1–9. https://doi.org/10.1016/j.bios.2018.08.065

    Article  CAS  PubMed  Google Scholar 

  21. Li YY, Liu D, Meng SY et al (2021) Regulation of Ru(bpy)32+ electrochemiluminescence based on distance-dependent electron transfer of ferrocene for dual-signal readout detection of aflatoxin B1 with high sensitivity. Anal Chem 94:1294–1301. https://doi.org/10.1021/acs.analchem.1c04501

    Article  CAS  PubMed  Google Scholar 

  22. Wang HY, Wang F, Wu T, Liu Y (2021) Highly active electrochemiluminescence of ruthenium complex Co-assembled chalcogenide nanoclusters and the application for label-free detection of alkaline phosphatase. Anal Chem 93:15794–15801. https://doi.org/10.1021/acs.analchem.1c04130

    Article  CAS  PubMed  Google Scholar 

  23. Qi HJ, Li HY, Li F (2021) Aptamer recognition-driven homogeneous electrochemical strategy for simultaneous analysis of multiple pesticides without interference of color and fluorescence. Anal Chem 93:7739–7745. https://doi.org/10.1021/acs.analchem.1c01252

    Article  CAS  PubMed  Google Scholar 

  24. Karki SB, Hona RK, Yu M, Ramezanipour F (2022) Enhancement of electrocatalytic activity as a function of structural order in perovskite oxides. ACS Catal 12:10333–10337. https://doi.org/10.1021/acscatal.2c02411

    Article  CAS  Google Scholar 

  25. Komarala EP, Neethinathan CSS, Kokkiligadda S et al (2022) DNA scaffolds with manganese oxide/oxyhydroxide nanoparticles for highly stable supercapacitance electrodes. ACS Appl Nano Mater 5:8902–8912. https://doi.org/10.1021/acsanm.2c01091

    Article  CAS  Google Scholar 

  26. Li C, Jiang HM, Liu PX et al (2022) One porphyrin per chain self-assembled helical ion-exchange channels for ultrahigh osmotic energy conversion. J Am Chem Soc 144:9472–9478. https://doi.org/10.1021/jacs.2c02798

    Article  CAS  PubMed  Google Scholar 

  27. Zhao FL, Feng YY, Wang Y et al (2020) Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat Commun 11:1443. https://doi.org/10.1038/s41467-020-15262-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang HB, Shi HD, Das P et al (2020) The chemistry and promising applications of graphene and porous graphene materials. Adv Funct Mater 30:1909035. https://doi.org/10.1002/adfm.201909035

    Article  CAS  Google Scholar 

  29. Sun ZX, Fang SY, Hu YH (2020) 3D graphene materials: from understanding to design and synthesis control. Chem Rev 120:10336–10453. https://doi.org/10.1021/acs.chemrev.0c00083

    Article  CAS  PubMed  Google Scholar 

  30. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Correction to: improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  31. Devi R, Gogoi S, Barua S et al (2019) Electrochemical detection of monosodium glutamate in foodstuffs based on Au@MoS2/chitosan modified glassy carbon electrode. Food Chem 276:350–357. https://doi.org/10.1016/j.foodchem.2018.10.024

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Huang KL, Liu SQ, Hu X (2009) Electrochemical supercapacitor behavior of Ni3(Fe(CN)6)2(H2O) nanoparticles. J Power Sources 186:565–569. https://doi.org/10.1016/j.jpowsour.2008.08.071

    Article  CAS  Google Scholar 

  33. Fan LF, Wang GZ, Liang WT et al (2019) Label-free and highly selective electrochemical aptasensor for detection of PCBs based on nickel hexacyanoferrate nanoparticles/reduced graphene oxides hybrids. Biosens Bioelectron 145:111728. https://doi.org/10.1016/j.bios.2019.111728

    Article  CAS  PubMed  Google Scholar 

  34. Deng Y, Yan WN, Guo YJ et al (2022) Highly sensitive and selective photoelectrochemical aptasensing of di-2-ethylhexyl phthalate based on graphene quantum dots decorated TiO2 nanotube arrays. J Hazard Mater 426:128107. https://doi.org/10.1016/j.jhazmat.2021.128107

    Article  CAS  PubMed  Google Scholar 

  35. Lee K, Gurudatt NG, Heo W et al (2022) Ultrasensitive detection and risk assessment of di (2-ethylhexyl) phthalate migrated from daily-use plastic products using a nanostructured electrochemical aptasensor. Sens Actuators B 357:131381. https://doi.org/10.1016/j.snb.2022.131381

    Article  CAS  Google Scholar 

  36. Fan Z, Fan L, Shuang S, Dong C (2018) Highly sensitive photoelectrochemical sensing of bisphenol A based on zinc phthalocyanine/TiO2 nanorod arrays. Talanta 189:16–23. https://doi.org/10.1016/j.talanta.2018.06.043

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant 22076107, 21707082, and 21775095), the Natural Science Foundation of Shanxi Province (20210302124342), the Hundred Talent Program of Shanxi Province, Shanxi Laboratory for Yellow River, and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujing Guo or Lifang Fan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3.99 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Deng, Y., Liao, D. et al. Nickel hexacyanoferrate nanoparticle-decorated 3D rGO composites-based electrochemical sensing platform for detection of di-2-ethylhexyl phthalate. Microchim Acta 190, 107 (2023). https://doi.org/10.1007/s00604-023-05670-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05670-w

Keywords

Navigation