Skip to main content

Advertisement

Log in

Graphene frameworks-confined synthesis of 2D-layered NiCoP for the electrochemical sensing of H2O2 at lower overpotential

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new 2D-layered nickel cobalt phosphide nanosheet confined by 3D graphene frameworks (denoted as NiCoP/GFs) is in situ controllably synthesized as a highly efficient and durable electrocatalyst, which is obtained from the transformation of corresponding NiCo layer double hydroxides and GFs. Hydrogen peroxide (H2O2) is selected as a demonstration to study the electrochemical sensing performance of the NiCoP/GFs. Benefiting from 2D morphology of NiCoP and network structure of GFs, NiCoP/GFs exhibits remarkable electroactivity toward H2O2 at a relatively low overpotential of approximately − 0.3 V (vs sat. Ag/AgCl) in 0.01 M phosphate-buffered saline solution (PBS, pH = 7.4). The NiCoP/GFs-based H2O2 electrochemical sensor achieves a high sensitivity of ∼4398 μA mM−1 cm−2, a low detection limit of 0.028 ± 0.006 μM, and desirable selectivity. In addition, the sensor can sensitively detect H2O2 from living cancer cells. This study not merely broadens the synthesis methods of transition metal phosphide–based nanocrystals but the NiCoP/GFs also has broad prospects in diverse electrochemistry fields.

Graphical abstract

We have reported a controllable synthesis of 2D nickel cobalt phosphide nanosheet confined by graphene frameworks (denoted as NiCoP/GFs) as a greatly efficient and durable electrocatalyst. The NiCoP/GFs exhibits remarkable electroactivity toward detection of H2O2 at a relatively low overpotential of approximately −0.3 V. Density functional theory (DFT) calculations further prove that regulation of the electronic structure of NiCoP by GFs lowers the adsorption free energy of *OOH intermediates, and thus contributes to the greatly improved the electrocatalytic performance of NiCoP/GFs toward H2O2 reduction. The developed NiCoP/GFs can be applied as excellent electrode materials for efficient electrochemical sensing of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagarajan RD, Sundaramurthy A, Sundramoorthy AK (2022) Synthesis and characterization of MXene (Ti3C2Tx)/iron oxide composite for ultrasensitive electrochemical detection of hydrogen peroxide. Chemosphere 286:131478

    Article  CAS  PubMed  Google Scholar 

  2. Dong Y, Zheng J (2020) Environmentally friendly synthesis of Co-based zeolitic imidazolate framework and its application as H2O2 sensor. Chem Eng J 392:123690

    Article  CAS  Google Scholar 

  3. Dong H, Zhou Y, Hao Y, Zhao L, Sun S, Zhang Y, Ye B, Xu M (2020) “Turn-on” ratiometric electrochemical detection of H2O2 in one drop of whole blood sample via a novel microelectrode sensor. Biosens Bioelectron 165:112402

    Article  CAS  PubMed  Google Scholar 

  4. Chai XS, Hou QX, Luo Q, Zhu JY (2004) Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method. Anal Chim Acta 507(2):281–284

    Article  CAS  Google Scholar 

  5. Yu F, Li P, Song P, Wang B, Zhao J, Han K (2012) Facilitative functionalization of cyanine dye by an on–off–on fluorescent switch for imaging of H2O2 oxidative stress and thiols reducing repair in cells and tissues. Chem Commun 48(41):4980–4982

    Article  CAS  Google Scholar 

  6. Xie J, Huang Y (2011) Co3O4 nanoparticles-enhanced luminol chemiluminescence and its application in H2O2 and glucose detection. Anal Methods 3(5):1149–1155

    Article  CAS  Google Scholar 

  7. Gimeno P, Bousquet C, Lassu N, Maggio A-F, Civade C, Brenier C, Lempereur L (2015) High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products. J Pharmaceut Biomed Anal 107:386–393

    Article  CAS  Google Scholar 

  8. Tong S, Li Z, Qiu B, Zhao Y, Zhang Z (2018) Biphasic nickel phosphide nanosheets: self-supported electrocatalyst for sensitive and selective electrochemical H2O2 detection and its practical applications in blood and living cells. Sens Actuators B: Chem 258:789–795

    Article  CAS  Google Scholar 

  9. Sun Y, Luo M, Meng X, Xiang J, Wang L, Ren Q, Guo S (2017) Graphene/intermetallic PtPb nanoplates composites for boosting electrochemical detection of H2O2 released from cells. Anal Chem 89(6):3761–3767

    Article  CAS  PubMed  Google Scholar 

  10. Asif M, Liu H, Aziz A, Wang H, Wang Z, Ajmal M, Xiao F, Liu H (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359

    Article  CAS  PubMed  Google Scholar 

  11. Hu Y, Hojamberdiev M, Geng D (2021) Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J Mater Chem C 9(22):6970–6990

    Article  CAS  Google Scholar 

  12. Poolakkandy RR, Neelakandan AR, Puthiyaparambath MF, Krishnamurthy RG, Chatanathodi R, Menamparambath MM (2022) Nickel cobaltite/multi-walled carbon nanotube flexible sensor for the electrochemical detection of dopamine released by human neural cells. J Mater Chem C 10(8):3048–3060

    Article  CAS  Google Scholar 

  13. Xiong X, You C, Cao X, Pang L, Kong R, Sun X (2017) Ni2P nanosheets array as a novel electrochemical catalyst electrode for non-enzymatic H2O2 sensing. Electrochim Acta 253:517–521

    Article  CAS  Google Scholar 

  14. Liu D, Chen T, Zhu W, Cui L, Asiri AM, Lu Q, Sun X (2016) Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection. Nanotechnology 27(33):33LT01

    Article  PubMed  Google Scholar 

  15. Wang H, Wang Y, Zhang J, Liu X, Tao S (2021) Electronic structure engineering through Fe-doping CoP enables hydrogen evolution coupled with electro-Fenton. Nano Energy 84:105943

    Article  CAS  Google Scholar 

  16. Kang SM, Kim M, Lee JB, Xu S, Clament Sagaya Selvam N, Yoo PJ (2021) A NiCoP nanocluster-anchored porous Ti3C2Tx monolayer as high performance hydrogen evolution reaction electrocatalysts. Nanoscale 13(30):12854–12864

    Article  CAS  PubMed  Google Scholar 

  17. Dang T, Wei D, Zhang G, Wang L, Li Q, Liu H, Cao Z, Zhang G, Duan H (2020) Homologous NiCoP/CoP hetero-nanosheets supported on N-doped carbon nanotubes for high-rate hybrid supercapacitors. Electrochim Acta 341:135988

    Article  CAS  Google Scholar 

  18. Lin Y, Sun K, Liu S, Chen X, Cheng Y, Cheong W-C, Chen Z, Zheng L, Zhang J, Li X, Pan Y, Chen C (2019) Construction of CoP/NiCoP Nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv Energy Mater 9(36):1901213

    Article  Google Scholar 

  19. Yang M, Li Y, Yan T, Jin Z (2021) NiCo LDH in situ derived NiCoP 3D nanoflowers coupled with a Cu3P p–n heterojunction for efficient hydrogen evolution. Nanoscale 13(32):13858–13872

    Article  CAS  PubMed  Google Scholar 

  20. Qin Z, Chen Y, Huang Z, Su J, Guo L (2017) A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride. J Mater Chem A 5(36):19025–19035

    Article  CAS  Google Scholar 

  21. He P, Yu X-Y, Lou XW (2017) Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem Int Ed 56(14):3897–3900

    Article  CAS  Google Scholar 

  22. Boppella R, Tan J, Yang W, Moon J (2019) Homologous CoP/NiCoP Heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv Energy Mater 29(6):1807976

    Google Scholar 

  23. Liu Y, Liu X, Guo Z, Hu Z, Xue Z, Lu X (2017) Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively. Biosens Bioelectron 87:101–107

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Y, Zhang X, Sun J, Li M, Lin Y, Kang K, Meng Y, Feng Z, Wang J (2019) A non-enzymatic amperometric glucose sensor based on the use of graphene frameworks-promoted ultrafine platinum nanoparticles. Microchim Acta 186(8):538

    Article  Google Scholar 

  25. Yin D, Bo X, Liu J, Guo L (2018) A novel enzyme-free glucose and H2O2 sensor based on 3D graphene aerogels decorated with Ni3N nanoparticles. Anal Chim Acta 1038:11–20

    Article  CAS  PubMed  Google Scholar 

  26. Zhou D, Cai Z, Lei X, Tian W, Bi Y, Jia Y, Han N, Gao T, Zhang Q, Kuang Y, Pan J, Sun X, Duan X (2018) NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv Energy Mater 8(9):1701905

    Article  Google Scholar 

  27. Wang Q, Shang L, Shi R, Zhang X, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H, Zhang T (2017) NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc–air batteries. Adv Energy Mater 7(21):1700467

    Article  Google Scholar 

  28. Zhu Y, Kang K, Jia Y, Guo W, Wang J (2020) General and fast synthesis of graphene frameworks using sugars for high-performance hydrogen peroxide nonenzymatic electrochemical sensor. Microchim Acta 187(12):669

    Article  CAS  Google Scholar 

  29. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phy Rev B 47(1):558–561

    Article  CAS  Google Scholar 

  30. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phy Rev B 49(20):14251–14269

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  32. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phy Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  33. Blöchl PE (1994) Projector augmented-wave method. Phy Rev B 50(24):17953–17979

    Article  Google Scholar 

  34. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phy Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phy Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  36. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  37. Niu H-J, Wang A-J, Zhang L, Guo J-J, Feng J-J (2019) Ultrafine NiCoP-decorated N, S, P-codoped hierarchical porous carbon nanosheets as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution. Mater Chem Front 3(9):1849–1858

    Article  CAS  Google Scholar 

  38. Yan X, Hu Q-T, Wang G, Zhang W-D, Liu J, Li T, Gu Z-G (2020) NiCo layered double hydroxide/hydroxide nanosheet heterostructures for highly efficient electro-oxidation of urea. Int J Hydrogen Energy 45(38):19206–19213

    Article  CAS  Google Scholar 

  39. Cui HJ, Yu HM, Zheng JF, Wang ZJ, Zhu YY, Jia SP, Jia J, Zhu ZP (2016) N-Doped graphene frameworks with superhigh surface area: excellent electrocatalytic performance for oxygen reduction. Nanoscale 8(5):2795–2803

    Article  CAS  PubMed  Google Scholar 

  40. Wu P, Cheng S, Yao M, Yang L, Zhu Y, Liu P, Xing O, Zhou J, Wang M, Luo H, Liu M (2017) A low-cost, self-standing NiCo2O4@CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors. Adv Funct Mater 27(34):1702160

    Article  Google Scholar 

  41. Xu J, Li D, Chen Y, Tan L, Kou B, Wan F, Jiang W, Li F (2017) Constructing sheet-on-sheet structured graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary nanocomposite with outstanding catalytic properties on thermal decomposition of ammonium perchlorate. Nanomaterials 7(12):450

    Article  PubMed Central  Google Scholar 

  42. Zhang Y, Sun L, Zhang L, Li X, Gu J, Si H, Wu L, Shi Y, Sun C, Zhang Y (2020) Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage. Compos Part B: Eng 182:107611

    Article  CAS  Google Scholar 

  43. Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C (2015) Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A 3(4):1656–1665

    Article  CAS  Google Scholar 

  44. Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X (2017) Metal-organic frameworks derived nanotube of nickel–cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Ad Funct Mater 27(40):1703455

    Article  Google Scholar 

  45. Mishra IK, Zhou H, Sun J, Qin F, Dahal K, Bao J, Chen S, Ren Z (2018) Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ Sci 11(8):2246–2252

    Article  CAS  Google Scholar 

  46. Yan L, Sun Y, Hu E, Ning J, Zhong Y, Zhang Z, Hu Y (2019) Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis. J Colloid Interf Sci 541:279–286

    Article  CAS  Google Scholar 

  47. Chen D, Pu Z, Lu R, Ji P, Wang P, Zhu J, Lin C, Li H-W, Zhou X, Hu Z, Xia F, Wu J, Mu S (2020) Ultralow Ru loading transition metal phosphides as high-efficient bifunctional electrocatalyst for a solar-to-hydrogen generation system. Adv Energy Mater 10(28):2000814

    Article  CAS  Google Scholar 

  48. Li Z, Xin Y, Wu W, Fu B, Zhang Z (2016) Topotactic conversion of copper(I) phosphide nanowires for sensitive electrochemical detection of H2O2 release from living cells. Anal Chem 88(15):7724–7729

    Article  CAS  PubMed  Google Scholar 

  49. Zhao F, Zhou S, Zhang Y (2021) Ultrasensitive detection of hydrogen peroxide using Bi2Te3 electrochemical sensors. ACS Appl Mater Interfaces 13(3):4761–4767

    Article  CAS  PubMed  Google Scholar 

  50. Sherino B, Mohamad S, Abdul Halim SN, Abdul Manan NS (2018) Electrochemical detection of hydrogen peroxide on a new microporous Ni–metal organic framework material-carbon paste electrode. Sens Actuators B: Chem 254:1148–1156

    Article  CAS  Google Scholar 

  51. Yang J, Yu C, Hu C, Wang M, Li S, Huang H, Bustillo K, Han X, Zhao C, Guo W, Zeng Z, Zheng H, Qiu J (2018) Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv Funct Mater 28(44):1803272

    Article  Google Scholar 

  52. Goran JM, Phan ENH, Favela CA, Stevenson KJ (2015) H2O2 detection at carbon nanotubes and nitrogen-doped carbon nanotubes: oxidation, reduction, or disproportionation? Anal Chem 87(12):5989–5996

    Article  CAS  PubMed  Google Scholar 

  53. Ma C, Feng S, Zhou J, Chen R, Wei Y, Liu H, Wang S (2019) Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue. Appl Catal B: Environ 259:118015

    Article  CAS  Google Scholar 

  54. Zhu H, Sigdel A, Zhang S, Su D, Xi Z, Li Q, Sun S (2014) Core/shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angew Chem Int Ed 53(46):12508–12512

    CAS  Google Scholar 

  55. Liu Y, Li H, Gong S, Chen Y, Xie R, Wu Q, Tao J, Meng F, Zhao P (2019) A novel non-enzymatic electrochemical biosensor based on the nanohybrid of bimetallic PdCu nanoparticles/carbon black for highly sensitive detection of H2O2 released from living cells. Sens Actuators B: Chem 290:249–257

    Article  CAS  Google Scholar 

  56. Sheng ZM, Gan ZZ, Huang H, Niu RL, Han ZW, Jia RP (2020) M-Nx (M = Fe Co, Ni, Cu) doped graphitic nanocages with high specific surface area for non-enzymatic electrochemical detection of H2O2. Sens Actuators B: Chem 305:127550

  57. Li Y, Huan K, Deng D, Tang L, Wang J, Luo L (2020) Facile Synthesis of ZnMn2O4@rGO Microspheres for Ultrasensitive Electrochemical Detection of Hydrogen Peroxide from Human Breast Cancer Cells. ACS Appl Mater Interfaces 12(3):3430–3437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Hebei Province (No. B2019206437), the Youth Top Talent Project of Funded by Science and Technology Project of Hebei Education Department (No. BJ2020034, QN2020223), Chunyu Project Outstanding Youth Fund of Hebei Medical University (No. CYYQ201903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Zhu or Jing Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4.44 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Ma, X., Lv, X. et al. Graphene frameworks-confined synthesis of 2D-layered NiCoP for the electrochemical sensing of H2O2 at lower overpotential. Microchim Acta 189, 345 (2022). https://doi.org/10.1007/s00604-022-05445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05445-9

Keywords

Navigation