Skip to main content
Log in

A ratiometric electrochemical DNA-biosensor for detection of miR-141

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive biosensor for the detection of miR-141 has been constructed. The DNA-biosensor is prepared by first immobilizing the thiolated methylene blue-labeled hairpin capture probe (MB-HCP) on two-layer nanocomposite film graphene oxide-chitosan@ polyvinylpyrrolidone-gold nanourchin modified glassy carbon electrode. We used the hematoxylin as an electrochemical auxiliary indicator in the second stage to recognize DNA hybridization via the square wave voltammetry (SWV) responses that record the accumulated hematoxylin on electrode surfaces. The morphology and chemical composition of nanocomposite was characterized using TEM, FE-SEM, and FT-IR techniques. The preparation stages of the DNA-biosensor were screened by electrochemical impedance spectroscopy and cyclic voltammetry. The proposed DNA-biosensor can distinguish miR-141 from a non-complementary and mismatch sequence. A detection limit of 0.94 fM and a linear range of 2.0 –5.0 × 105 fM were obtained using SWV for miR-141 detection. The working potential for methylene blue and hematoxylin was -0.28 and + 0.15 V vs. Ag/AgCl, respectively. The developed biosensor can be successfully used in the early detection of non-small cell lung cancer (NSCLC) by directly measuring miR-141 in human plasma samples. This novel DNA-biosensor is of promise in early sensitive clinical diagnosis of cancers with miR-141 as its biomarker.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schabath MB, Cote ML (2019) Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomark Prev 28(10):1563–1579. https://doi.org/10.1158/1055-9965.EPI-19-0221

    Article  Google Scholar 

  2. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A et al (2020) miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 9(2):276. https://doi.org/10.3390/cells9020276

    Article  CAS  PubMed Central  Google Scholar 

  3. Gillespie P, Ladame S, O’Hare D (2018) Molecular methods in electrochemical microRNA detection. Analyst 144(1):114–129. https://doi.org/10.1039/c8an01572d

    Article  CAS  PubMed  Google Scholar 

  4. Kong YJ, Tan XX, Zhang Y, He QJ, Zhao L et al (2019) MiR-141 promotes cell proliferation and invasion in non-small cell lung cancer by targeting KLF9. Eur Rev Med Pharmacol Sci 23(23):10370–8

    PubMed  Google Scholar 

  5. Zhao Y (2018) The diagnostic and prognostic role of circulating miR-141 expression in non-small-cell lung cancer patients. Int J Clin Exp Pathol 11:2597–2604

    PubMed  PubMed Central  Google Scholar 

  6. Tejero R, Navarro A, Campayo M, Viñolas N, Marrades RM et al (2014) miR-141 and miR-200c as Markers of Overall Survival in Early Stage Non-Small Cell Lung Cancer Adenocarcinoma. PLoS ONE 9(7):e101899. https://doi.org/10.1371/journal.pone.0101899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M et al (2020) Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 206:120251. https://doi.org/10.1016/j.talanta.2019.120251

    Article  CAS  PubMed  Google Scholar 

  8. Mousavi Nodoushan S, Nasirizadeh N, Amani J, Halabian R, Imani Fooladi AA (2018) An electrochemical aptasensor for Staphylococcal Enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens Bioelectron 127:221–228. https://doi.org/10.1016/j.bios.2018.12.021

    Article  CAS  PubMed  Google Scholar 

  9. Aghili Z, Nasirizadeh N, Divsalar A, Shoeibi S, Yaghmaei P (2018) A highly sensitive miR-195 nanobiosensor for early detection of Parkinson’s disease. Artif Cells Nanomed Biotechnol 46(sup1):32–40. https://doi.org/10.1080/21691401.2017.1411930

    Article  CAS  PubMed  Google Scholar 

  10. Hu Z, Wang X, Yang Y, Zhao Y, Shen Z et al (2019) MicroRNA expression profiling of lung adenocarcinoma in Xuanwei, China: A preliminary study. Medicine (Baltimore) 98(21):e15717. https://doi.org/10.1097/MD.0000000000015717

    Article  CAS  Google Scholar 

  11. Aghaei F, Seifati SM, Nasirizadeh N (2017) Development of a DNA biosensor for the detection of phenylketonuria based on a screen-printed gold electrode and hematoxylin. Anal Methods 9(6):966–973. https://doi.org/10.1039/C6AY02853E

    Article  CAS  Google Scholar 

  12. Golkarieh A-M, Nasirizadeh N, Jahanmardi R (2021) Fabrication of an electrochemical sensor with Au nanorods-graphene oxide hybrid nanocomposites for in situ measurement of cloxacillin. Mater Sci Eng C 118:111317. https://doi.org/10.1016/j.msec.2020.111317

    Article  CAS  Google Scholar 

  13. Shekari Z, Zare HA-O, Falahati A (2019) Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchim Acta 186:530. https://doi.org/10.1007/s00604-019-3572-9

    Article  CAS  Google Scholar 

  14. Zhang Q, Li X, Qian C, Dou L, Cui F, Chen X (2018) Label-free electrochemical immunoassay for neuron specific enolase based on 3D macroporous reduced graphene oxide/polyaniline film. Analytical Biochemistry 540–541:1–8. https://doi.org/10.1016/j.ab.2017.10.009

  15. Eksin E, Bikkarolla SK, Erdem A, Papakonstantinou P (2018) Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Biosensor for Impedimetric Detection of microRNA. Electroanalysis 30(3):551–560. https://doi.org/10.1002/elan.201700663

    Article  CAS  Google Scholar 

  16. Karaboduk K (2019) Electrochemical Determination of Ascorbic Acid Based on AgNPs/PVP-Modified Glassy Carbon Electrode. ChemistrySelect 4:6361–6369. https://doi.org/10.1002/slct.201901102

    Article  CAS  Google Scholar 

  17. Perumal R, Casale S, de Stefano L, Spadavecchia J (2017) Synthesis and characterization of Ag-Protoporphyrin nano structures using mixed co-polymer method. Front Lab Med 1(2):49–54. https://doi.org/10.1016/j.flm.2017.05.002

    Article  Google Scholar 

  18. Asadpour-Zeynali K, Mollarasouli F (2016) Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens Bioelectron 92:509–516. https://doi.org/10.1016/j.bios.2016.10.071

    Article  CAS  PubMed  Google Scholar 

  19. Daşdelen Z, yıldız Y, Eriş S, Şen F (2017) Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl Catal B 219:511–516. https://doi.org/10.1016/j.apcatb.2017.08.014

    Article  CAS  Google Scholar 

  20. Pavinatto A, Mercante LA, Facure MHM, Pena RB, Sanfelice RC et al (2018) Ultrasensitive biosensor based on polyvinylpyrrolidone/chitosan/reduced graphene oxide electrospun nanofibers for 17 alpha - Ethinylestradiol electrochemical detection. Appl Surf Sci 458:431–437. https://doi.org/10.1016/j.apsusc.2018.07.035

    Article  CAS  Google Scholar 

  21. Yin H, Zhou Y, Zhang H, Meng X, Ai S (2012) Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron 33(1):247–253. https://doi.org/10.1016/j.bios.2012.01.014

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Hua E, Liang M, Ma C, Liu Z et al (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207. https://doi.org/10.1016/j.bios.2013.07.049

    Article  CAS  PubMed  Google Scholar 

  23. Asadzadeh-Firouzabadi A, Zare HR, Nasirizadeh N (2015) Electrochemical Biosensor for Detection of Target DNA Sequence and Single-Base Mismatch Related to Helicobacter Pylori Using Chlorogenic Acid as Hybridization Indicator. J Electrochem Soc 163(3):B43–B48. https://doi.org/10.1149/2.0461603jes

    Article  CAS  Google Scholar 

  24. Moazampour M, Zare HR, Shekari Z (2021) Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on l-cysteine functionalized ZnS quantum dots. Anal Methods 13(17):2021–2029. https://doi.org/10.1039/D1AY00330E

    Article  CAS  PubMed  Google Scholar 

  25. Nasirizadeh N, Zare H, Pournaghi-Azar M, Hejazi M (2011) Introduction of hematoxylin as an electroactive label for DNA biosensors and its employment in detection of target DNA sequence and single-base mismatch in human papilloma virus corresponding to oligonucleotide. Biosens Bioelectron 26:2638–2644. https://doi.org/10.1016/j.bios.2010.11.026

    Article  CAS  PubMed  Google Scholar 

  26. Xiong X, Huang J, Wang X (2014) DNA Binding Studies of Hematoxylin-Dy(Ш) Complex by Spectrometry Using Acridine Orange as a Probe. Nucleosides, Nucleotides Nucleic Acids 33:730–745. https://doi.org/10.1080/15257770.2014.931589

    Article  CAS  PubMed  Google Scholar 

  27. Wang XM, Li HB, Hu YM, Yang DM, Fei D (2007) Study on the interaction between hematoxylin and DNA by spectrometry. Acta Chim Sinica 65:140–146

    CAS  Google Scholar 

  28. Tian L, Zhang Y, Wang L, Geng Q, Liu D et al (2020) Ratiometric Dual Signal-Enhancing-Based Electrochemical Biosensor for Ultrasensitive Kanamycin Detection. ACS Appl Mater Interfaces 12(47):52713–52720. https://doi.org/10.1021/acsami.0c15898

    Article  CAS  PubMed  Google Scholar 

  29. Zhu C, Liu D, Li Y, Shen X, Ma S et al (2020) Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Biosens Bioelectron 150:111814. https://doi.org/10.1016/j.bios.2019.111814

    Article  CAS  PubMed  Google Scholar 

  30. Panagopoulou MA, Stergiou DV, Roussis IG, Prodromidis MI (2010) Impedimetric Biosensor for the Assessment of the Clotting Activity of Rennet. Anal Chem 82(20):8629–8636. https://doi.org/10.1021/ac1017925

    Article  CAS  PubMed  Google Scholar 

  31. Ahlberg S, Antonopulos A, Diendorf J, Dringen R, Epple M et al (2014) PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J Nanotechnol 5:1944–1965. https://doi.org/10.3762/bjnano.5.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian Q, Wang Y, Deng R, Lin L, Liu Y et al (2015) Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Nanoscale 7(3):987–993. https://doi.org/10.1039/c4nr05243a

    Article  CAS  PubMed  Google Scholar 

  33. Shekari Z, Zare HR, Falahati A (2017) Developing an Impedimetric Aptasensor for Selective Label-Free Detection of CEA as a Cancer Biomarker Based on Gold Nanoparticles Loaded in Functionalized Mesoporous Silica Films. J Electrochem Soc 164(13):B739–B745. https://doi.org/10.1149/2.1991713jes

    Article  CAS  Google Scholar 

  34. Loaiza ÓA, Campuzano S, López-Berlanga M, Pedrero M, Pingarrón JM (2005) Development of a DNA Sensor Based on Alkanethiol Self- Assembled Monolayer-Modified Electrodes. Sensors 5(6):344–363. https://doi.org/10.3390/s5060344

  35. Dehghani M, Nasirizadeh N, Yazdanshenas ME (2019) Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer. Mater Sci Eng C 96:654–660. https://doi.org/10.1016/j.msec.2018.12.002.

  36. Zhang J, Wang LL, Hou MF, Xia YK, He WH et al (2018) A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction. Biosens Bioelectron 102:33–40. https://doi.org/10.1016/j.bios.2017.10.050

    Article  CAS  PubMed  Google Scholar 

  37. Cao Z, Duan F, Huang X, Liu Y, Zhou N et al (2019) A multiple aptasensor for ultrasensitive detection of miRNAs by using covalent-organic framework nanowire as platform and shell-encoded gold nanoparticles as signal labels. Anal Chim Acta 1082:176–185. https://doi.org/10.1016/j.aca.2019.07.062

    Article  CAS  PubMed  Google Scholar 

  38. Hasanzadeh M, Razmi N, Mokhtarzadeh A, Shadjou N, Mahboob S (2018) Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported alpha-cyclodextrin. Int J Biol Macromol 108:69–80. https://doi.org/10.1016/j.ijbiomac.2017.11.149

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Li X, Li D, Zhao M, Wu H et al (2020) Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens Bioelectron 168:112554. https://doi.org/10.1016/j.bios.2020.112554

    Article  CAS  PubMed  Google Scholar 

  40. Daneshpour M, Omidfar K, Ghanbarian H (2016) A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a. Beilstein J Nanotechnol 7:2023–2036. https://doi.org/10.3762/bjnano.7.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Q, Liu Y, Wang X, Wang F, Zhang L, Ge S, Yu J (2021) Ternary Electrochemiluminescence Biosensor Based on DNA Walkers and AuPd Nanomaterials as a Coreaction Accelerator for the Detection of miRNA-141. ACS Applied Materials & Interfaces 13(22):25783–25791. https://doi.org/10.1021/acsami.1c05368

  42. Liu L, Yao Y, Ma K, Shangguan C, Jiao S et al (2021) Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2. Sens Actuators B Chem 331:129470. https://doi.org/10.1016/j.snb.2021.129470

    Article  CAS  Google Scholar 

  43. Wang Q, Sun H, Wen D, Wang L, Li L et al (2021) Ultrasensitive electrochemical detection of miRNA based on polymerization signal amplification. Talanta 235:122744. https://doi.org/10.1016/j.talanta.2021.122744

    Article  CAS  PubMed  Google Scholar 

  44. Niu X, Lu C, Su D, Wang F, Tan W et al (2021) Construction of a Polarity-Switchable Photoelectrochemical Biosensor for Ultrasensitive Detection of miRNA-141. Anal Chem 93(40):13727–13733. https://doi.org/10.1021/acs.analchem.1c03460

    Article  CAS  PubMed  Google Scholar 

  45. Li M-J, An S-Y, Wu Y (2021) Photoelectrochemical monitoring of miRNA based on Au NPs@g-C3N4 coupled with exonuclease-involved target cycle amplification. Anal Chim Acta 1187:339156. https://doi.org/10.1016/j.aca.2021.339156

    Article  CAS  PubMed  Google Scholar 

  46. Wu T, Xu T, Chen Y, Yang Y, Xu L-P et al (2018) Renewable superwettable biochip for miRNA detection. Sens Actuators, B Chem 258:715–721. https://doi.org/10.1016/j.snb.2017.11.109

    Article  CAS  Google Scholar 

  47. Zhou H, Peng J, Qiu X, Gao y, Lu L, Wang W (2017) β-Ni(OH)2 nanosheets: An effective sensing platform for constructing nucleic acid-based optical sensors. J Mater Chem B 5:7426–7432. https://doi.org/10.1039/C7TB01389B

  48. Bodulev OL, Sakharov IY (2019) Chemiluminescent Determination of MicroRNA-141 Using Target-Dependent Activation of the Peroxidase-Mimicking DNAzyme. Anal Lett 52(5):813–824. https://doi.org/10.1080/00032719.2018.1498506

    Article  CAS  Google Scholar 

  49. Jou AF, Lu CH, Ou YC, Wang SS, Hsu SL et al (2015) Diagnosing the miR-141 prostate cancer biomarker using nucleic acid-functionalized CdSe/ZnS QDs and telomerase. Chem Sci 6(1):659–665. https://doi.org/10.1039/c4sc02104e

    Article  CAS  PubMed  Google Scholar 

  50. Shi C-X, Li S-X, Chen Z-P, Liu Q, Yu R-Q (2019) Label-Free and Multiplexed Quantification of microRNAs by Mass Spectrometry Based on Duplex-Specific-Nuclease-Assisted Recycling Amplification. Anal Chem 91(3):2120–2127. https://doi.org/10.1021/acs.analchem.8b04583

    Article  CAS  PubMed  Google Scholar 

  51. Liu Q, Kang P-J, Chen Z-P, Shi C-X, Chen Y et al (2019) Highly specific and sensitive detection of microRNAs by tandem signal amplification based on duplex-specific nuclease and strand displacement. Chem Commun 55(94):14210–14213. https://doi.org/10.1039/C9CC06790F

    Article  CAS  Google Scholar 

  52. Su J, Wang D, Nörbel L, Shen J, Zhao Z et al (2017) Multicolor Gold-Silver Nano-Mushrooms as Ready-to-Use SERS Probes for Ultrasensitive and Multiplex DNA/miRNA Detection. Anal Chem 89(4):2531–2538. https://doi.org/10.1021/acs.analchem.6b04729

    Article  CAS  PubMed  Google Scholar 

  53. Tran HV, Piro B, Reisberg S, Tran LD, Duc HT et al (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169. https://doi.org/10.1016/j.bios.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  54. Tran HV, Piro B, Reisberg S, Huy Nguyen L, Dung Nguyen T et al (2014) An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosens Bioelectron 62:25–30. https://doi.org/10.1016/j.bios.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  55. Leung W-H, Pang C-C, Pang S-N, Weng S-X, Lin Y-L et al (2021) High-Sensitivity Dual-Probe Detection of Urinary miR-141 in Cancer Patients via a Modified Screen-Printed Carbon Electrode-Based Electrochemical Biosensor. Sensors 21:3183. https://doi.org/10.3390/s21093183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Azzouzi S, Fredj Z, Turner APF, Ali MB, Mak WC (2019) Generic Neutravidin Biosensor for Simultaneous Multiplex Detection of MicroRNAs via Electrochemically Encoded Responsive Nanolabels. ACS Sensors 4(2):326–334. https://doi.org/10.1021/acssensors.8b00942

    Article  CAS  PubMed  Google Scholar 

  57. Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee M-H (2020) Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 159:112208. https://doi.org/10.1016/j.bios.2020.112208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is a part of Ali Khodadoust's doctoral dissertation. The authors are thankful for all the supports and funding from the Chemical Injuries Research Center and Applied Nano-biotechnology Research Center, Baqiyatallah University of Medical Sciences. Also, the authors are thankful form Islamic Azad University, Yazd Branch, and BioBank, Shiraz University of Medical Sciences, Iran. Authors kindly acknowledge Dr. Amin Ramezani and Dr. Fatemeh Khosravi for their helps.

The research ethics committee of Baqiyatallah University of Medical Sciences has approved the project (Approval ID: IR.BMSU.REC.1398.367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Bagheri.

Ethics declarations

Statements and Declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 657 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadoust, A., Nasirizadeh, N., Taheri, R.A. et al. A ratiometric electrochemical DNA-biosensor for detection of miR-141. Microchim Acta 189, 213 (2022). https://doi.org/10.1007/s00604-022-05301-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05301-w

Keywords

Navigation