Skip to main content
Log in

A catalyst-free co-reaction system of long-lasting and intensive chemiluminescence applied to the detection of alkaline phosphatase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A catalyst-free co-reaction luminol-H2O2–K2S2O8 chemiluminescence (CL) system was developed, with long-life and high-intensity emission, and CL emission lasting for 6 h. A possible mechanism of persistent and intense emission in this CL system was discussed in the context of CL spectra, cyclic voltammetry, electron spin resonance (ESR), and the effects of radical scavengers on luminol-H2O2–K2S2O8 system. H2O2 and K2S2O8 co-reactants can promote each other to continuously generate corresponding radicals (OH, 1O2, O2•−, SO4•−) that trigger the CL emission of luminol. H2O2 can also be constantly produced by the reaction of K2S2O8 and H2O to further extend the persistence of this CL system. CL emission can be quenched via ascorbic acid (AA), which can be generated through hydrolysis reaction of L-ascorbic acid 2-phosphate trisodium salt (AAP) and alkaline phosphatase (ALP). Next, a CL-based method was established for the detection of ALP with good linearity from 0.08 to 5 U·L−1 and a limit of detection of 0.049 U·L−1. The proposed method was used to detect ALP in human serum samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li F, Guo L, Li ZM, He JB, Cui H (2020) Temporal-spatial-color multiresolved chemiluminescence imaging for multiplex immunoassays using a smartphone coupled with microfluidic chip. Anal Chem 92:6827–6831

    Article  CAS  Google Scholar 

  2. Gnaim S, Scomparin A, Das S, Blau R, Satchi-Fainaro R, Shabat D (2018) Direct real-time monitoring of prodrug activation by chemiluminescence. Angew Chem In Ed 57:9033–9037. https://doi.org/10.1002/anie.201804816

    Article  CAS  Google Scholar 

  3. Xiao ZY, Wang YT, Xu B, Du SF, Fan WD, Cao DW, Deng Y, Zhang LL, Wang L, Sun DF (2020) An integrated chemiluminescence microreactor for ultrastrong and long-lasting light emission. Adv Sci 7:2000065

    Article  CAS  Google Scholar 

  4. Adams ST, Mofford DM, Reddy GSKK, Miller SC (2016) Firefly luciferase mutants allow substrate-selective bioluminescence imaging in the mouse brain. Angew Chem In Ed 55:4943–4946. https://doi.org/10.1002/anie.201511350

    Article  CAS  Google Scholar 

  5. Xie Q, Mao GB, Chen YS, Ji XH, He ZK (2020) Long-lasting chemiluminescence hydrogels made in situ. Mater Lett 263:127205. https://doi.org/10.1016/j.matlet.2019.127205

  6. Jie X, Yang H, Wang M, Zhang Y, Wei W, Xia Z (2017) A Peroxisome-inspired chemiluminescent silica nanodevice for the intracellular detection of biomarkers and its application to insulin-sensitizer screening. Angew Chem In Ed 56:14596–14601. https://doi.org/10.1002/anie.201708958

    Article  CAS  Google Scholar 

  7. Li D, Zhang S, Feng X, Yang H, Nie F, Zhang W (2019) A novel peroxidase mimetic Co-MOF enhanced luminol chemiluminescence and its application in glucose sensing. Sensor Actuat B-Chem 296:126631. https://doi.org/10.1016/j.snb.2019.126631

    Article  CAS  Google Scholar 

  8. Liu YT, Shen W, Li Q, Shu JN, Gao LF, Ma MM, Wang W, Cui H (2017) Firefly-mimicking intensive and long-lasting chemiluminescence hydrogels. Nat Commun 8:1003. https://doi.org/10.1038/s41467-017-01101-6

  9. Wu H, Zhao M, Li J, Zhou X, Yang T, Zhao D, Liu P, Ju H, Cheng W, Ding S (2020) Novel protease-free long-lasting chemiluminescence system based on the Dox-ABEI chimeric magnetic DNA hydrogel for ultrasensitive immunoassay, Acs Appl. Mater Inter 12:47270–47277. https://doi.org/10.1021/acsami.0c14188

    Article  CAS  Google Scholar 

  10. Ye L, Min W, Chenchen W, Wei W, Yong L (2020) Enhancing hydrogel-based long-lasting chemiluminescence by a platinum-metal organic framework and its application in array detection of pesticides and d-amino acids. Nanoscale 12:4959–4967. https://doi.org/10.1039/D0NR00203H

    Article  Google Scholar 

  11. Sun XQ, Lei J, Jin Y, Li BX (2020) Long-lasting and intense chemiluminescence of luminol triggered by oxidized g-C3N4 nanosheets. Anal Chem 92:11860–11868. https://doi.org/10.1021/acs.analchem.0c02221

    Article  CAS  PubMed  Google Scholar 

  12. Yang CP, He L, Huang CZ, Li YF, Zhen SJ (2021) Continuous singlet oxygen generation for persistent chemiluminescence in Cu-MOFs-based catalytic system. Talanta 221:121498. https://doi.org/10.1016/j.talanta.2020.121498

    Article  CAS  PubMed  Google Scholar 

  13. Merenyi G, Lind JS (1980) Role of a peroxide intermediate in the chemiluminescence of luminol. Mechanistic Study, J Am Chem Soc 102:5830–5835. https://doi.org/10.1021/ja00538a022

    Article  CAS  Google Scholar 

  14. Rauhut MM, Semsel AM, Roberts BG (1966) Reaction rates, quantum yields, and partial mechanism for the chemiluminescent reaction of 3-Aminophthalhydrazide with aqueous alkaline hydrogen peroxide and persulfate1. J Org Chem 31:2431–2436. https://doi.org/10.1021/jo01346a001

    Article  CAS  Google Scholar 

  15. Huang G, Ouyang J, Delanghe JR, Baeyens WRG, Dai Z (2004) Chemiluminescent image detection of haptoglobin phenotyping after polyacrylamide gel electrophoresis. Anal Chem 76:2997–3004. https://doi.org/10.1021/ac035109e

    Article  CAS  PubMed  Google Scholar 

  16. Zeng Y, Ren J-Q, Wang S-K, Mai J-M, Qu B, Zhang Y, Shen A-G, Hu J-M (2017) Rapid and reliable detection of alkaline phosphatase by a hot spots amplification strategy based on well-controlled assembly on single nanoparticle. Acs Appl Mater Inter 9:29547–29553. https://doi.org/10.1021/acsami.7b09336

    Article  CAS  Google Scholar 

  17. Han Y, Chen J, Li Z, Chen H, Qiu H (2020) Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens Bioelectron 148:111811. https://doi.org/10.1016/j.bios.2019.111811

    Article  CAS  PubMed  Google Scholar 

  18. He Y, Jiao BN (2017) Determination of the activity of alkaline phosphatase based on the use of ssDNA-templated fluorescent silver nanoclusters and on enzyme-triggered silver reduction, Microchim. Acta 184:4167–4173. https://doi.org/10.1007/s00604-017-2459-x

    Article  CAS  Google Scholar 

  19. Wang DM, Gao MX, Gao PF, Yang H, Huang CZ (2013) Carbon nanodots-catalyzed chemiluminescence of luminol: a singlet oxygen-induced mechanism. J Phys Chem C 117:19219–19225. https://doi.org/10.1021/jp404973b

    Article  CAS  Google Scholar 

  20. He L, Peng ZW, Jiang ZW, Tang XQ, Huang CZ, Li YF (2017) Novel iron(III)-based metal-organic gels with superior catalytic performance toward luminol chemiluminescence, Acs Appl. Mater Inter 9:31834–31840. https://doi.org/10.1021/acsami.7b08476

    Article  CAS  Google Scholar 

  21. Xiao SY, Li Y, Zhen SJ, Huang CZ, Li YF (2020) Efficient peroxydisulfate electrochemiluminescence system based the novel silver metal-organic gel as an effective enhancer. Electrochim Acta 357:136842. https://doi.org/10.1016/j.electacta.2020.136842

    Article  CAS  Google Scholar 

  22. Zhang QR, Dai H, Wang T, Li YL, Zhang SP, Xu GF, Chen SH, Lin YY (2016) Ratiometric electrochemiluminescent immunoassay for tumor marker regulated by mesocrystals and biomimetic catalyst. Electrochim Acta 196:565–571. https://doi.org/10.1016/j.electacta.2016.02.202

    Article  CAS  Google Scholar 

  23. Li CY, Gao JH, Yi J, Zhang XG, Cao XD, Meng M, Wang C, Huang YP, Zhang SJ, Wu DY, Wu CL, Xu JH, Tian ZQ, Li JF (2018) Plasmon-Enhanced Ultrasensitive Surface Analysis Using Ag Nanoantenna. Anal Chem 90:2018–2022. https://doi.org/10.1021/acs.analchem.7b04113

    Article  CAS  PubMed  Google Scholar 

  24. Rasmus Lybech J, Jacob A, Peter RO (2012) Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate. J Am Chem Soc 134:9820–9826. https://doi.org/10.1021/ja303710m

    Article  CAS  Google Scholar 

  25. Anqi W, Hui W, Hao D, Shu W, Wei S, Zixiao Y, Rongliang Q, Kai Y (2019) Controllable synthesis of mesoporous manganese oxide microsphere efficient for photo-Fenton-like removal of fluoroquinolone antibiotics. Appl Catal B-Environ 238:298–308. https://doi.org/10.1016/j.apcatb.2019.02.034

    Article  CAS  Google Scholar 

  26. Na Y, Hongjie S, Xiangyu W, Xiaoqing F, Yingying S, Yi L (2015) A metal (Co)–organic framework-based chemiluminescence system for selective detection of l-cysteine. Analyst 140:2656–2663. https://doi.org/10.1039/C5AN00022J

    Article  CAS  Google Scholar 

  27. Bornemann K (1903) Beiträge zur Kenntnis des Wasserstoffsuperoxyds. Z Anorg Chem 34:1–42. https://doi.org/10.1002/zaac.19030340102

    Article  Google Scholar 

  28. Solanki DN, Kamath ISK (1946) The electrolytic preparation of hydrogen peroxide. Proc Indian Acad Sci - Section A 24:305–314. https://doi.org/10.1007/BF03171065

    Article  Google Scholar 

  29. Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 202:133–141. https://doi.org/10.1016/S0022-1759(96)00244-X

    Article  CAS  PubMed  Google Scholar 

  30. Kim S-H, Kim B, Yadavalli VK, Pishko MV (2005) Encapsulation of enzymes within polymer spheres to create optical nanosensors for oxidative stress. Anal Chem 77:6828–6833. https://doi.org/10.1021/ac0507340

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Li X, Yang Q, Wang D, Yao F, Cao J, Chen Z, Huang X, Yang Y, Li X (2020) Mxene-modulated dual-heterojunction generation on a metal-organic framework (MOF) via surface constitution reconstruction for enhanced photocatalytic activity. Chem Eng J 390:124519. https://doi.org/10.1016/j.cej.2020.124519

    Article  CAS  Google Scholar 

  32. Yang Z, Xia X, Shao L, Wang L, Liu Y (2021) Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Chem Eng J 410:128454. https://doi.org/10.1016/j.cej.2021.128454

    Article  CAS  Google Scholar 

  33. He L, Jiang ZW, Li W, Li CM, Huang CZ, Li YF (2018) In situ synthesis of gold nanoparticles/metal-organic gels hybrids with excellent peroxidase-like activity for sensitive chemiluminescence detection of organophosphorus pesticides. Acs Appl Mater Inter 10:28868–28876. https://doi.org/10.1021/acsami.8b08768

    Article  CAS  Google Scholar 

  34. Yao W, Wang L, Wang H, Zhang X (2008) Cathodic electrochemiluminescence behavior of norfloxacin/peroxydisulfate system in purely aqueous solution. Electrochim Acta 54:733–737. https://doi.org/10.1016/j.electacta.2008.06.067

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (NSFC, no. 21874109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhi Huang or Yuan Fang Li.

Ethics declarations

Ethics approval

This study was approved by the institutional committee of Southwest University (approval number: yxy202114).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 821 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X.J., Yang, C.P., Jiang, Z.W. et al. A catalyst-free co-reaction system of long-lasting and intensive chemiluminescence applied to the detection of alkaline phosphatase. Microchim Acta 189, 181 (2022). https://doi.org/10.1007/s00604-022-05287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05287-5

Keywords

Navigation