Skip to main content
Log in

Chiroptical-responsive nanoprobe for the optosensing of chiral amino acids

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A supersensitive chiroptical-responsive system of enantioselectively recognizing L- and D-tryptophan (Trp) based on ( +)-diacetyl-L-tartaric anhydride-functionalized 1,3,5-triformylphloroglucinol (DTA-functionalized Tp) was constructed for the first time. With a high fluorescence quantum yield of 15.2% and fluorescence lifetime of 57.6 μs, DTA-functionalized Tp as both fluorescent and chiral recognition nanoprobe was used for the discrimination of L- and D-Trp with excitation/emission maxima at 330/490 nm within 3 min. The linear range of the fluorescence sensing was 0.002–0.15 μg mL−1, and the detection limit achieved 1.4 ng mL−1. Furthermore, a smartphone was employed as a detector and processor to couple with the chiroptical-responsive nanoprobe for establishing a novel and visual integration system for rapid and real-time detection of chiral amino acids with a detection limit of 13 ng mL−1. The spiked recoveries of L-Trp in two commercially available functional beverages ranged from 86.00 to 118.33% in fluorescence and smartphone-based sensing system. Based on the excellent chiroptical-responsive effects, high stability, and biocompatibility, the chiroptical-responsive nanoprobe was successfully applied to visual optosensing and fluorescence imaging in response to L- and D-Trp in HeLa cells. This discrimination methodology with high sensitivity and enantioselectively shows great potential for in-site visually monitoring chiral amino acids in real food samples and tracking physiological processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu X, Guo F (2020) Amino acid sensing in metabolic homeostasis and health. Endocr Rev 42(1):56–76. https://doi.org/10.1016/j.fshw.2015.01.001

    Article  Google Scholar 

  2. Liang RP, Liu CM, Meng XY, Wang JW, Qiu JD (2012) A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. J Chromatogr A 1266:95–102. https://doi.org/10.1016/j.chroma.2012.09.101

    Article  CAS  PubMed  Google Scholar 

  3. Waldhier MC, Almstetter MF, Nürnberger N, Gruber MA, Dettmer K, Oefner PJ (2011) Improved enantiomer resolution and quantification of free D-amino acids in serum and urine by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 1218:4537–4544. https://doi.org/10.1016/j.chroma.2011.05.039

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Z, Liu Y, Liu P, Yang L, Jiang X, Luo D, Yang D (2017) Non-invasive detection of gastric cancer relevant d-amino acids with luminescent DNA/silver nanoclusters. Nanoscale 9:19367–19373. https://doi.org/10.1039/c7nr07337b

    Article  CAS  PubMed  Google Scholar 

  5. Niu X, Yang X, Mo Z, Guo R, Liu N, Zhao P, Ouyang M (2019) Voltammetric enantiomeric differentiation of tryptophan by using multiwalled carbon nanotubes functionalized with ferrocene and β-cyclodextrin. Electrochim Acta 297:650–659. https://doi.org/10.1016/j.electacta.2018.12.041

    Article  CAS  Google Scholar 

  6. Song J, Yang C, Ma J, Han Q, Ran P, Fu Y (2018) Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Microchim Acta 185:230. https://doi.org/10.1007/s00604-018-2765-y

    Article  CAS  Google Scholar 

  7. Sardella R, Lisanti A, Marinozzi M, Ianni F, Natalini B, Blanch GP, Castillob ML (2013) Combined monodimensional chromatographic approaches to monitor the presence of D-amino acids in cheese. Food Control 34:478–487. https://doi.org/10.1016/j.foodcont.2013.05.026

    Article  CAS  Google Scholar 

  8. Rocco A, Aturki Z, Fanali S (2013) Chiral separations in food analysis. TrAC Trends Anal Chem 52:206–225. https://doi.org/10.1016/j.trac.2017.05.013

    Article  CAS  Google Scholar 

  9. Booth TD, Wahnon D, Wainer IW (1997) Is chiral recognition a three-point process? Chirality 9:96–98. https://doi.org/10.1002/(SICI)1520-636X(1997)9:2%3c96::AID-CHIR2%3e3.0.CO;2-E

    Article  CAS  Google Scholar 

  10. Teixeira J, Tiritan ME, Pinto MMM, Fernandes C (2019) Chiral stationary phases for liquid chromatography: recent developments. Molecules 24:865. https://doi.org/10.3390/molecules24050865

    Article  CAS  PubMed Central  Google Scholar 

  11. Jágerszki G, Takács A, Bitter I, Gyurcsányi RE (2011) Solid-state ion channels for potentiometric sensing. Angew Chem Int Ed 50:1656–1659. https://doi.org/10.1002/anie.201003849

    Article  CAS  Google Scholar 

  12. Zhang J, Albelda MT, Liu Y, Canary JW (2005) Chiral nanotechnology. Chirality 17:404–420. https://doi.org/10.1002/chir.20178

    Article  CAS  PubMed  Google Scholar 

  13. Huang J, Egan VM, Guo H, Yoon JY, Briseno AL, Rauda IE, Garrell RL, Knobler CM, Zhou F, Kaner RB (2003) Enantioselective discrimination of D- and L-phenylalanine by chiral polyaniline thin films. Adv Mater 15:1158–1161. https://doi.org/10.1002/adma.200304835

    Article  CAS  Google Scholar 

  14. Zhang L, Xu C, Liu C, Li B (2014) Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Anal Chim Acta 809:123–127. https://doi.org/10.1016/j.aca.2013.11.043

    Article  CAS  PubMed  Google Scholar 

  15. Duan C, Won M, Verwilst P, Xu J, Kim HS, Zeng L, Kim JS (2019) In vivo imaging of endogenously produced HClO in zebrafish and mice using a bright, photostable ratiometric fluorescent probe. Anal Chem 91:4172–4178. https://doi.org/10.1021/acs.analchem.9b00224

    Article  CAS  PubMed  Google Scholar 

  16. Huang H, Chen B, Li L, Wang Y, Shen Z, Wang Y, Li X (2022) A two-photon fluorescence probe with endoplasmic reticulum targeting ability for turn-on sensing photosensitized singlet oxygen in living cells and brain tissues. Talanta 237:122963. https://doi.org/10.1016/j.talanta.2021.122963

    Article  CAS  PubMed  Google Scholar 

  17. Zhu X, Han L, Liu H, Sun B (2022) A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots. Food Chem 379:132154. https://doi.org/10.1016/j.foodchem.2022.132154

    Article  CAS  PubMed  Google Scholar 

  18. Kabe R, Adachi C (2017) Organic long persistent luminescence. Nature 550:384–387. https://doi.org/10.1038/nature24010

    Article  CAS  PubMed  Google Scholar 

  19. Kwak SY, Giraldo JP, Wong MH, Koman VB, Lew TTS, Ell J, Weidman MC, Sinclair RM, Landry MP, Tisdale WA, Strano MS (2017) A nanobionic light-emitting plant. Nano Lett 17:7951–7961. https://doi.org/10.1021/acs.nanolett.7b04369

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Su W, Wu H, Yuan T, Yuan C, Liu J, Deng G, Gao X, Chen Z, Bao Y, Yuan F, Zhou S, Tan H, Li Y, Li X, Fan L, Zhu J, Chen AT, Liu F, Zhou Y, Li M, Zhai X, Zhou J (2020) Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng 4:704–716. https://doi.org/10.1038/s41551-020-0540-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu JM, Hu Y, Yang YK, Liu H, Fang GZ, Lu X, Wang S (2018) Emerging functional nanomaterials for the detection of food contaminants. Trends Food Sci Tech 71:94–106. https://doi.org/10.1016/j.tifs.2017.11.005

    Article  CAS  Google Scholar 

  22. Xu X, An H, Zhang D, Tao H, Dou Y, Li X, Huang J, Zhang J (2019) A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Sci Adv 5:eaat2953. https://doi.org/10.1126/sciadv.aat2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clough JM, Balan A, van Daal TLJ, Sijbesma RP (2016) Probing force with mechanobase-induced chemiluminescence. Angew Chem Int Ed 55:1445–1449. https://doi.org/10.1002/anie.201508840

    Article  CAS  Google Scholar 

  24. Gnaim S, Shabat D (2017) Self-immolative chemiluminescence polymers: innate assimilation of chemiexcitation in a domino-like depolymerization. J Am Chem Soc 139:10002–10008. https://doi.org/10.1021/jacs.7b04804

    Article  CAS  PubMed  Google Scholar 

  25. Gnaim S, Scomparin A, Das S, Blau R, Satchi-Fainaro R, Shabat D (2018) Direct real-time monitoring of prodrug activation by chemiluminescence. Angew Chem Int Ed 57:9033–9037. https://doi.org/10.1002/anie.201804816

    Article  CAS  Google Scholar 

  26. Hananya N, Shabat D (2019) Recent advances and challenges in luminescent imaging: bright outlook for chemiluminescence of dioxetanes in water. ACS Central Sci 5:949–959. https://doi.org/10.1021/acscentsci.9b00372

    Article  CAS  Google Scholar 

  27. Xiao X, Wu T, Cao J, Zhu C, Liu Y, Zhang X, Shen Y (2020) Rational engineering of chromic material as near-infrared ratiometric fluorescent nanosensor for H2S monitoring in real food samples. Sens Actuators B 323:128707. https://doi.org/10.1016/j.snb.2020.128707

    Article  CAS  Google Scholar 

  28. Yuan X, Jiang W, Wang J, Liu H, Sun B (2020) High-performance multiporous imprinted microspheres based on N-doped carbon dots exfoliated from covalent organic framework for flonicamid optosensing. ACS Appl Mater Inter 12:25150–25158. https://doi.org/10.1021/acsami.0c04766

    Article  CAS  Google Scholar 

  29. Yuan X, Zhang D, Zhu X, Liu H, Sun B (2021) Triple-dimensional spectroscopy combined with chemometrics for the discrimination of pesticide residues based on ionic liquid-stabilized Mn-ZnS quantum dots and covalent organic frameworks. Food Chem 342:128299. https://doi.org/10.1016/j.foodchem.2020.128299

    Article  CAS  PubMed  Google Scholar 

  30. Zhu X, Jiang W, Zhao Y, Liu H, Sun B (2021) Single, dual and multi-emission carbon dots based optosensing for food safety. Trends Food Sci Tech 111:388–404. https://doi.org/10.1016/j.tifs.2021.03.005

    Article  CAS  Google Scholar 

  31. Zhu X, Yuan X, Han L, Liu H, Sun B (2021) A smartphone-integrated optosensing platform based on red-emission carbon dots for real-time detection of pyrethroids. Biosens Bioelectron 191:113460. https://doi.org/10.1016/j.bios.2021.113460

    Article  CAS  PubMed  Google Scholar 

  32. Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134:19524–19527. https://doi.org/10.1021/ja308278w

    Article  CAS  PubMed  Google Scholar 

  33. Qian HL, Yang CX, Yan XP (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7:12104. https://doi.org/10.1038/ncomms12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kou WT, Yang CX, Yan XP (2018) Post-synthetic modification of metal–organic frameworks for chiral gas chromatography. J Mater Chem A 6:17861–17866. https://doi.org/10.1039/C8TA06804F

    Article  CAS  Google Scholar 

  35. Armstrong DW, Ward TJ, Armstrong RD, Beesley TE (1986) Separation of drug stereoisomers by the formation of β-cyclodextrin inclusion complexes. Science 232(4754):1132–1135. https://doi.org/10.1126/science.3704640

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Liu H, Sun B (2022) Chiral induction in carbazole-conjugated covalent organic frameworks: a supersensitive fluorescence sensing platform for chiral recognition. Sensor Actuat B: Chem 354:131253. https://doi.org/10.1016/j.snb.2021.131253

    Article  CAS  Google Scholar 

  37. Luo X, Han Y, Chen X, Tang W, Yue T, Li Z (2020) Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: a review. Trends Food Sci Tech 95:149–161. https://doi.org/10.1016/j.tifs.2019.11.017

    Article  CAS  Google Scholar 

  38. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31822040, 32072335) and the National Key R&D Program of China (No. 2018YFC1602300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Liu.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1136 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yuan, X., Jiang, W. et al. Chiroptical-responsive nanoprobe for the optosensing of chiral amino acids. Microchim Acta 189, 184 (2022). https://doi.org/10.1007/s00604-022-05282-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05282-w

Keywords

Navigation