Skip to main content
Log in

Ultrasensitive dual-quenching electrochemiluminescence immunosensor for prostate specific antigen detection based on graphitic carbon nitride quantum dots as an emitter

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Early monitoring of prostate-specific antigen (PSA) is crucial in diagnosis and proactive treatment of prostate disease. Herein, a dual-quenching ternary ECL immunosensor was designed for PSA detection based on graphitic carbon nitride quantum dots (g-CNQDs, as an emitter), potassium persulfate (K2S2O8, as a coreactant), and silver nanoparticles doped multilayer Ti3C2 MXene hybrids (Ag@TCM, as a coreaction accelerator). First, Ag@TCM was immobilized on the surface of a glassy carbon electrode, then g-CNQDs was further adsorbed on Ag@TCM to acquire a higher initial ECL signal at a potential window from − 1.3 to 0.0 V (vs. Ag/AgCl). Ag@TCM not only acted as the coreaction accelerator, but also as a matrix to load enormous g-CNQDs and prostate-specific capture antibody via Ag–N bond. Meanwhile, prostate-specific detection antibody was marked by gold nanoparticles modified manganese dioxide as a dual-quenching probe (Ab2- Au@MnO2). When Ab2-Au@MnO2 was introduced into the ternary ECL system via sandwiched immuno-reaction, the high-sensitive detection of PSA was achieved by the dual-quenching effect, caused by the resonant energy transfer from g-CNQDs (energy donor) to Au@MnO2 (energy acceptor). As a result, this ECL immunosensor showed a good dynamic concentration range from 10 fg·mL−1 to 100 ng·mL−1 with a detection limit of 6.9 fg·mL−1 for PSA detection. The dual-quenching ECL strategy presented high stability and good specificity to open up a new pathway for ultrasensitive immunoassay.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liang H, Xu HB, Zhao YT, Zheng J, Zhao H, Li GL, Li CP (2019) Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosens Bioelectron 144:111691

    Article  CAS  Google Scholar 

  2. Hu Q, Gan SY, Bao Y (2020) Zhang YW,* Han DX, Niu L (2020) Electrochemically controlled ATRP for cleavage-based electrochemical detection of the prostate-specific antigen at femtomolar level concentrations. Anal Chem 92:15982–15988

    Article  CAS  Google Scholar 

  3. Liu A, Zhao F, Zhao Y, Guan LS, Liu S (2016) A portable chemiluminescence imaging immunoassay for simultaneous detection of different isoforms of prostate specific antigen in serum. Biosens Bioelectron 81:97–102

    Article  CAS  Google Scholar 

  4. Rong Z, Bai Z, Li J, Tang H, Shen T, Wang Q, Wang CW, Xiao R, Wang SQ (2019) Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specific antigen. Biosens Bioelectron 145:111719

    Article  CAS  Google Scholar 

  5. Zeng R, Zhang L, Su L, Luo Z, Zhou Q, Tang D (2019) Photoelectrochemical bioanalysis of antibiotics on rGO-Bi2WO6-Au based on branched hybridization chain reaction. Biosens Bioelectron 133:100–106

    Article  CAS  Google Scholar 

  6. Zhang YC, Zhang Z, Wang ZM, Pan HZ, Lin Y, Chang D (2021) Sensitive detection of prostate-specific antigen based on dual signal amplification of Fc@MgAl-LDH and NH2-MIL-101(Fe). Biosens Bioelectron 190:113437

    Article  CAS  Google Scholar 

  7. Wang HJ, Liao LL, Chai YQ, Yuan R (2020) Sensitive immunosensor based on high effective resonance energy transfer of lucigenin to the cathodic electrochemiluminescence of tris(bipyridine) Ru(II) complex. Biosens Bioelectron 150:111915

    Article  CAS  Google Scholar 

  8. Fang DD, Zhang SP, Dai H, Lin YY (2019) An ultrasensitive ratiometric electrochemiluminescence immunosensor combining photothermal amplification for ovarian cancer marker detection. Biosens Bioelectron 146:111768

    Article  CAS  Google Scholar 

  9. Zhou Y, Chen SH, Luo XL, Chai YQ, Yuan R (2018) Ternary electrochemiluminescence nanostructure of Au nanoclusters as a highly efficient signal label for ultrasensitive detection of cancer biomarkers. Anal Chem 90:10024–10030

    Article  CAS  Google Scholar 

  10. Khan MS, Ameer H, Ali A, Li Y, Yang L, Ren X, Wei Q (2020) Electrochemiluminescence behaviour of silver/ZnIn2S4/reduced graphene oxide composites quenched by Au@SiO2 nanoparticles for ultrasensitive insulin detection. Biosens Bioelectron 162:112235

    Article  CAS  Google Scholar 

  11. Zhao G, Wang Y, Li X, Yue Q, Dong X, Du B, Cao W, Wei Q (2019) Dual quenching electrochemiluminescence strategy based on 3D metal-organic frameworks for ultrasensitive detection of amyloid-β. Anal Chem 91:1989–1996

    Article  CAS  Google Scholar 

  12. Song C, Li XJ, Hu LH, Shi TF, Wu D, Ma HM, Zhang Y, Fan DW, Wei Q, Ju HX (2020) Quench-type electrochemiluminescence immunosensor based on resonance energy transfer from carbon nanotubes and Au-nanoparticles-enhanced g-C3N4 to CuO@Polydopamine for procalcitonin detection. ACS Appl Mater Interfaces 12:8006–8015

    Article  CAS  Google Scholar 

  13. Liu Y, Haghighatbin MA, Shen W, Cui H (2020) Functionalized polydopamine nanospheres with chemiluminescence and immunoactivity for label-free copeptin immunosensing. ACS Applied Nano Materials 3:4681–4689

    Article  CAS  Google Scholar 

  14. Hu LY, Zheng J, Zhao K, Deng AP, Li JG (2018) An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac. Biosens Bioelectron 101:260–267

    Article  CAS  Google Scholar 

  15. Liu JL, Jiang J, Zhang JQ, Chai YQ, Xiao Q, Yuan R (2020) The combination of ternary electrochemiluminescence system of g-C3N4 nanosheet/TEA/Cu@Cu2O and G-quadruplex-driven regeneration strategy for ultrasensitive bioanalysis. Biosens Bioelectron 152:112006

    Article  CAS  Google Scholar 

  16. An T, Tang J, Zhang YY, Quan Y, Gong X, Al-Enizi AM, Elzatahry AA, Zhang LJ, Zheng GF (2016) Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires. ACS Appl Mater Interfaces 8:12772–12779

    Article  CAS  Google Scholar 

  17. Sudhaik A, Raizada P, Thakur S, Saini AK, Hosseini-Bandegharaei A (2020) Metal-free photo-activation of peroxymonosulfate using graphene supported graphitic carbon nitride for enhancing photocatalytic activity. Mater Lett 277:128277

    Article  CAS  Google Scholar 

  18. Boldaji SR, Yaftian MR, Hatefi-Mehrjardi A, Shayani-Jam H (2020) Graphitic carbon nitride-graphene nanoplates; application in the sensitive electrochemical detection of noscapine. Synth Met 268:116489

    Article  Google Scholar 

  19. Liu ZM, Zhang X, Ge XG, Hu LQ, Hu YJ (2019) Electrochemiluminescence sensing platform for ultrasensitive DNA analysis based on resonance energy transfer between graphitic carbon nitride quantum dots and gold nanoparticles. Sens. Actuators B Chem 297:126790

    Article  CAS  Google Scholar 

  20. Zhou M, Weng Q, Popov ZI, Yang Y, Antipina LY, Sorokin PB, Wang X, Bando Y, Golberg D (2018) Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS Nano 12:4148–4155

    Article  CAS  Google Scholar 

  21. Zhang X, Wang H, Wang H, Zhang Q, Xie J, Tian Y, Wang J, Xie Y (2014) Single-layered graphitic-C(3)N(4) quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv Mater 26:4438–4443

    Article  CAS  Google Scholar 

  22. Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang CH, Basu M, Pande S (2016) Synthesis of monometallic (Au and Pd) and bimetallic (AuPd) nanoparticles using carbon nitride (C3N4) quantum dots via the photochemical route for nitrophenol reduction. Langmuir 32:10054–10064

    Article  CAS  Google Scholar 

  23. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2013) MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005

    Article  Google Scholar 

  24. Chen JL, Tong P, Huang LT, Yu ZH, Tang DP (2019) Ti3C2 MXene nanosheet-based capacitance immunoassay with tyramine-enzyme repeats to detect prostate-specific antigen on interdigitated micro-comb electrode. Electrochim Acta 319:375–381

    Article  CAS  Google Scholar 

  25. Fang YF, Yang XC, Chen T, Xu GF, Liu ML, Liu JQ, Xu YH (2018) Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sens Actuators B Chem 263:400–407

    Article  CAS  Google Scholar 

  26. Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud KA, Tkac J (2018) Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens Actuators B Chem 263:360–368

    Article  CAS  Google Scholar 

  27. Zhang H, Wang Z, Zhang Q, Wang F, Liu Y (2019) Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens Bioelectron 124–125:184–190

    Article  Google Scholar 

  28. Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee MH (2020) Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 159:112208

    Article  CAS  Google Scholar 

  29. Su Q, Gan LL, Zhu Y, Yang XM (2021) Dual-emissive fluorescence and phosphorescence detection of cholesterol and glucose based on carbon dots-cyanuric acid complex quenched by MnO2 nanosheets. Sens Actuators B Chem 335:129715

    Article  CAS  Google Scholar 

  30. Ma MN, Zhuo Y, Yuan R, Chai YQ (2015) New signal amplification strategy using semicarbazide as co-reaction accelerator for highly sensitive electrochemiluminescent aptasensor construction. Anal Chem 87:11389–11397

    Article  CAS  Google Scholar 

  31. Zuo F, Zhang C, Zhang H, Tan X, Chen S, Yuan R (2019) A solid-state electrochemiluminescence biosensor for Con A detection based on CeO2@Ag nanoparticles modified graphene quantum dots as signal probe. Electrochim Acta 294:76–83

    Article  CAS  Google Scholar 

  32. Wang H, Ma Q, Wang YF, Wang CH, Qin DD, Shan DL, Chen J, Lu XQ (2017) Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal Chim Acta 973:34–42

    Article  CAS  Google Scholar 

  33. Chen AY, Zhao M, Zhuo Y, Chai YQ, Yuan R (2017) Hollow porous polymeric nanospheres of a self-enhanced ruthenium complex with improved electrochemiluminescent efficiency for ultrasensitive aptasensor construction. Anal Chem 89:9232–9238

    Article  CAS  Google Scholar 

  34. Sun YL, Gao P, Han R, Luo CN, Wei Q (2021) A target-triggered signal chemiluminescence sensor for prostate specific antigen detection based on hollow porous silica encapsulated luminol by aptamers. Sens Actuators B Chem 333:129543

    Article  CAS  Google Scholar 

  35. Khoshfetrat SM, Khoshsafar H, Afkhami A, Mehrgardi MA, Bagheri H (2019) Enhanced visual wireless electrochemiluminescence immunosensing of prostate-specific antigen based on the luminol loaded into MIL-53(Fe)-NH2 accelerator and hydrogen evolution reaction mediation. Anal Chem 91:6383–6390

    Article  CAS  Google Scholar 

  36. Xu DD, Deng YL, Li CY, Lin Y, Tang HW (2017) Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: a sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosens Bioelectron 87:881–887

    Article  CAS  Google Scholar 

  37. Fu YM, Xiao K, Zhang XH, Du CC, Chen JH (2021) Peptide cleavage-mediated and environmentally friendly photocurrent polarity switching system for prostate-specific antigen assay. Anal Chem 93:1076–1083

    Article  CAS  Google Scholar 

  38. Fang Q, Lin Z, Lu F, Chen Y, Gao W (2019) A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator. Electrochim Acta 302:207–215

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22077105) and the Natural Science Foundation Project of CQ CSTC (cstc2020jcyj-msxmX0854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzi Fu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1043 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Meng, H., Zhang, G. et al. Ultrasensitive dual-quenching electrochemiluminescence immunosensor for prostate specific antigen detection based on graphitic carbon nitride quantum dots as an emitter. Microchim Acta 188, 350 (2021). https://doi.org/10.1007/s00604-021-05015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05015-5

Keywords

Navigation