Skip to main content
Log in

RETRACTED ARTICLE: Synthesis of hierarchically porous 3D polymeric carbon superstructures with nitrogen-doping by self-transformation: a robust electrocatalyst for the detection of herbicide bentazone

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

This article was retracted on 29 September 2022

This article has been updated

Abstract

Bentazone (BEZ) is one of the utmost selective problematic contact-past herbicide with high toxicity for humans owing to feasible contamination of surface and ground water. In this work, an electrochemical sensor has been developed for the sensitive detection of BEZ, based on hierarchically porous three-dimensional (3D) carbon superstructures (CS)–modified electrodes. The CSs (namely, CSHEX, CSPY, CSACN, and CSNOS) were prepared by the pyrolysis process from organic porous polyacrylonitrile (PAN) superstructure particles (namely, PANHEX, PANPY, PANACN, and PANNOS) obtained by free radical polymerization method using different solvents (hexane, pyridine, acetonitrile, and also no solvent). The assembly with the working electrode of CSs causes the electrocatalytic BEZ oxidation by rapid electron transfer compared to the PAN superstructures and bare electrodes. Intriguingly, compared to all electrodes, CSHEX-modified electrode showed the superior electrochemical detection of BEZ at a working potential of 0.99 V (vs. Ag/AgCl), very low detection limit (0.002 μM), wide dynamic linear range (0.03 to 200 μM), high sensitivity (9.95 μA μM−1 cm−2), and excellent reliability. The advanced sensors displayed an intensification of oxidation peak current of BEZ with high selectivity, remarkable sensitivity, and reproducibility for BEZ detection and received satisfactory outcomes designating the application of sensors for the determination of BEZ in river water samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Bruzzoniti MC, De Carlo RM, Rivoira L, Del Bubba M, Pavani M, Riatti M, Onida B (2016) Adsorption of bentazone herbicide onto mesoporous silica: application to environmental water purification. Environ Sci Pollut Res 23:5399–5409

    Article  CAS  Google Scholar 

  2. Cañero AI, Becerra D, Cornejo J, Hermosín MC, Albarrán Á, López-Piñeiro A, Cox L (2012) Transformation of organic wastes in soil: effect on bentazone behaviour. Sci Total Environ 433:198–205

    Article  PubMed  Google Scholar 

  3. Wang B, Ding G, Zhu J, Zhang W, Guo M, Geng Q, Guo D, Cao Y (2015) Development of novel ionic liquids based on bentazone. Tetrahedron 71:7860–7864

    Article  CAS  Google Scholar 

  4. Ashraf G, Asif M, Aziz A, Wang Z, Qiu X, Huang Q, Xiao F, Liu H (2019) Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Microchim Acta 186:337

    Article  Google Scholar 

  5. Gao Y, Cao Y, Yang D, Luo X, Tang Y, Li H (2012) Sensitivity and selectivity determination of bisphenol A using SWCNT–CD conjugate modified glassy carbon electrode. J Hazard Mater 199:111–118

    Article  PubMed  Google Scholar 

  6. Ashraf G, Asif M, Aziz A, Iftikhar T, Liu H (2021) Rice-spikelet-like copper oxide decorated with platinum stranded in the CNT network for electrochemical in vitro detection of serotonin. ACS Appl Mater Interfaces 13:6023–6033

    Article  CAS  PubMed  Google Scholar 

  7. Aziz A, Asif M, Ashraf G, Azeem M, Majeed I, Ajmal M, Wang J, Liu H (2019) Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review. Microchim Acta 186:1–16

    Article  Google Scholar 

  8. Ashraf G, Aziz A, Qaisrani RN, Chen W, Asif M (2021) Detecting and inactivating severe acute respiratory syndrome coronavirus-2 under the auspices of electrochemistry. Curr Res Chem Biol 100001. https://doi.org/10.1016/j.crchbi.2021.100001

  9. Jevtić S, Stefanović A, Stanković DM, Pergal MV, Ivanović AT, Jokić A, Petković BB (2018) Boron-doped diamond electrode—a prestigious unmodified carbon electrode for simple and fast determination of bentazone in river water samples. Diam Relat Mater 81:133–137

    Article  Google Scholar 

  10. Cerejeira RP, Delerue-Matos C, Vaz CM (2002) Development of an FIA system with amperometric detection for determination of bentazone in estuarine waters. Anal Bioanal Chem 373:295–298

    Article  CAS  PubMed  Google Scholar 

  11. Rahemi V, Garrido JM, Borges F, Brett CM, Garrido EM (2013) Electrochemical determination of the herbicide bentazone using a carbon nanotube β-cyclodextrin modified electrode. Electroanalysis. 25:2360–2366

    CAS  Google Scholar 

  12. Jokić A, Petković B, Jevtić S, Vasić V, Laban B (2019) Characterization of new synthesized Fe2O3 nanoparticles and their application as detection signal amplifiers in herbicide bentazone electroanalytical determination. Univ Thought Publ Nat Sci 9:27–31

    Article  Google Scholar 

  13. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Liu Z, Sun H, Gao C (2015) Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem Rev 115:7046–7117

    Article  CAS  PubMed  Google Scholar 

  15. Hwang J, Jo C, Hur K, Lim J, Kim S, Lee J (2014) Direct access to hierarchically porous inorganic oxide materials with three-dimensionally interconnected networks. J Am Chem Soc 136:16066–16072

    Article  CAS  PubMed  Google Scholar 

  16. Jo C, Hwang J, Lim WG, Lim J, Hur K, Lee J (2018) Multiscale phase separations for hierarchically ordered macro/mesostructured metal oxides. Adv Mater 30:1703829

    Article  Google Scholar 

  17. Tan S, Tackett BM, He Q, Lee JH, Chen JG, Wong SS (2020) Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W 2 N 3). Nano Res 9:1–10

  18. Senthil RA, Yang V, Pan J, Sun Y (2021) A green and economical approach to derive biomass porous carbon from freely available feather finger grass flower for advanced symmetric supercapacitors. J Energy Storage 35:102287

    Article  Google Scholar 

  19. Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X (2016) Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv Mater 28:1981–1987

    Article  CAS  PubMed  Google Scholar 

  20. O’Neill SJK, Gong H, Matsuhisa N, Chen S, Moon H, Wu HC, Chen X, Chen X, Bao Z (2020) A carbon flower based flexible pressure sensor made from large-area coating. Adv Mater Interfaces 7:2000875

    Article  Google Scholar 

  21. Zhu D, Ma H, Zhen Q, Xin J, Tan L, Zhang C, Wang X, Xiao B (2020) Hierarchical flower-like zinc oxide nanosheets in-situ growth on three-dimensional ferrocene-functionalized graphene framework for sensitive determination of epinephrine and its oxidation derivative. Appl Surf Sci 526:146721

    Article  CAS  Google Scholar 

  22. Li Y, Xiao K, Huang C, Wang J, Gao M, Hu A, Tang Q, Fan B, Xu Y, Chen X (2021) Enhanced potassium-ion storage of the 3d carbon superstructure by manipulating the nitrogen-doped species and morphology. Nano-Micro Lett 13:1–4

    Article  Google Scholar 

  23. Guo D, Wei H, Chen X, Liu M, Ding F, Yang Z, Yang Y, Wang S, Yang K, Huang S (2017) 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium–sulfur batteries. J Mater Chem A 5:18193–18206

    Article  CAS  Google Scholar 

  24. Ci J, Cao C, Kuga S, Shen J, Wu M, Huang Y (2017) Improved performance of microbial fuel cell using esterified corncob cellulose nanofibers to fabricate air-cathode gas diffusion layer. ACS Sustain Chem Eng 5:9614–9618

    Article  CAS  Google Scholar 

  25. Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127

    Article  CAS  Google Scholar 

  26. Briseno AL, Mannsfeld SC, Shamberger PJ, Ohuchi FS, Bao Z, Jenekhe SA, Xia Y (2008) Self-assembly, molecular packing, and electron transport in n-type polymer semiconductor nanobelts. Chem Mater 20:4712–4719

    Article  CAS  Google Scholar 

  27. Yang S, Bachman RE, Feng X, Müllen K (2013) Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion. Acc Chem Res 46:116–128

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Marson RL, Ge Z, Glotzer SC, Ma PX (2015) Simultaneous nano-and microscale control of nanofibrous microspheres self-assembled from star-shaped polymers. Adv Mater 27:3947–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoo HG, Byun M, Jeong CK, Lee KJ (2015) Performance enhancement of electronic and energy devices via block copolymer self-assembly. Adv Mater 27:3982–3998

    Article  CAS  PubMed  Google Scholar 

  30. Choi IY, Lee J, Ahn H, Lee J, Choi HC, Park MJ (2015) High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew Chem Int Ed 54:10497–10501

    Article  CAS  Google Scholar 

  31. Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Müllen K (2012) Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134:19532–19535

    Article  CAS  PubMed  Google Scholar 

  32. Xie L, Li X, Deng J, Gong Y, Wang H, Mao S, Wang Y (2018) Sustainable and scalable synthesis of monodisperse carbon nanospheres and their derived superstructures. Green Chem 20:4596–4601

    Article  CAS  Google Scholar 

  33. Nataraj SK, Yang KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers-a state-of-the-art review. Prog Polym Sci 37:487–513

    Article  CAS  Google Scholar 

  34. Cipriani E, Zanetti M, Bracco P, Brunella V, Luda MP, Costa L (2016) Crosslinking and carbonization processes in PAN films and nanofibers. Polym Degrad Stab 123:178–188

    Article  CAS  Google Scholar 

  35. Zhou Z, Liu K, Lai C, Zhang L, Li J, Hou H, Reneker DH, Fong H (2010) Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer 51:2360–2367

    Article  CAS  Google Scholar 

  36. Asif M, Aziz A, Ashraf G, Wang Z, Wang J, Azeem M, Chen X, Xiao F, Liu H (2018) Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl Mater Interfaces 10:36675–36685

    Article  CAS  PubMed  Google Scholar 

  37. Ashraf G, Asif M, Aziz A, Dao AQ, Zhang T, Iftikhar T, Wang Q, Liu H (2020) Facet-energy inspired metal oxide extended hexapods decorated with graphene quantum dots: sensitive detection of bisphenol A in live cells. Nanoscale 12:9014–9023

    Article  CAS  PubMed  Google Scholar 

  38. Aziz A, Asif M, Azeem M, Ashraf G, Wang Z, Xiao F, Liu H (2019) Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal Chim Acta 1047:197–207

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsieh-Chih Tsai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s00604-022-05493-1

Supplementary information

ESM 1

Experimental section (Chemicals and reagents, Preparation of PAN polymer superstructures and carbon superstructures (CSs), Preparation of carbon superstructures (CSs), Apparatus and measurements, and Fabrication of PAN superstructures and CSs on SPCE), FE-SEM images of PAN superstructures, TEM, FTIR, Raman, and XRD images of CSs. Schematic illustrations of the morphologies of the CSs superstructures, BET isotherms and XPS analysis of CSs superstructures, pore size distribution of the CSs superstructures, linear plot of potential vs. log of scan rate, DPV curves of BEZ on the CSPY, CSACN and CSNOS, interference effect of possible co-interfering compounds, storage stability, table of elemental compositions of prepared carbon superstructures, Comparison of analytical parameters of CSHEX/SPCE on the electrochemical detection of BEZ with formerly reported literature, and optimization of effect of modifier. (DOCX 11527 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutharani, B., Ranganathan, P., Tsai, HC. et al. RETRACTED ARTICLE: Synthesis of hierarchically porous 3D polymeric carbon superstructures with nitrogen-doping by self-transformation: a robust electrocatalyst for the detection of herbicide bentazone. Microchim Acta 188, 271 (2021). https://doi.org/10.1007/s00604-021-04910-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04910-1

Keywords

Navigation