Skip to main content
Log in

Hydrothermally synthesized cubical zinc manganite nanostructure for electrocatalytic detection of sulfadiazine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrocatalyst modified electrode has been investigated to develop the rapid detection of antibiotics. The modified electrocatalyst was intended for the determination of sulfadiazine (SFZ) in biological fluids by electrochemical methods. Nanocube of zinc manganite (ZnMn2O4-NC) is prepared by hydrothermal method and a glassy carbon electrode (GCE) has been modified with the zinc manganite. The ZnMn2O4/GCE exhibit enhanced detection performances towards SFZ drug owing to their selective adsorption ability and the combination of electrostatic attraction of nanocube with SFZ. The modified electrocatalyst shows excellent electrocatalytic interactions with antibiotic drug. Besides, the modified sensors exhibit nanomolar detection limit (0.0021 μM) in 0.05 M phosphate buffer (pH = 7.0) using differential pulse voltammetric method. The working range of the modified electrode is 0.008–1264 μM, and the sensitivity of the SFZ sensor is 11.44 μA μM–1 cm–2. The modified sensor stability and reproducibility performances have been examined by electrochemical method. In addition, the obtained results of real sample analysis with different concentrations of SFZ in biological fluids are satisfactory with good recovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Afsharipour R, Shabani AMH, Dadfarnia S, Kazemi E (2020) Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots. Microchim Acta 187:1–8. https://doi.org/10.1007/s00604-019-4001-9

    Article  CAS  Google Scholar 

  2. Duan Y, Deng L, Shi Z, Liu X, Zeng H, Zhang H, Crittenden J (2020) Efficient sulfadiazine degradation via in-situ epitaxial grow of graphitic carbon nitride (g-C3N4) on carbon dots heterostructures under visible light irradiation: synthesis, mechanisms and toxicity evaluation. J Colloid Interface Sci 561:696–707. https://doi.org/10.1016/j.jcis.2019.11.046

    Article  CAS  PubMed  Google Scholar 

  3. Xu X, Meng L, Dai Y, Zhang M, Sun C, Yang S, He H, Wang S, Li H (2020) Bi spheres SPR-coupled Cu2O/Bi2MoO6 with hollow spheres forming Z-scheme Cu2O/Bi/Bi2MoO6 heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni (II). J Hazard Mater 381:120953. https://doi.org/10.1016/j.jhazmat.2019.120953

    Article  CAS  PubMed  Google Scholar 

  4. Cruz-González AM, Vargas-Santana MS, Ortiz CP, Cerquera NE, Delgado DR, Martínez F, Jouyban A, Acree WE Jr (2021) Solubility of sulfadiazine in (ethylene glycol+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation. J Mol Liq 323:115058. https://doi.org/10.1016/j.molliq.2020.115058

    Article  CAS  Google Scholar 

  5. Qiu L, Wu J, Du W, Nafees M, Yin Y, Ji R, Banwart SA, Guo H (2021) Response of soil bacterial communities to sulfadiazine present in manure: protection and adaptation mechanisms of extracellular polymeric substances. J Hazard Mater 408:124887. https://doi.org/10.1016/j.jhazmat.2020.124887

    Article  CAS  PubMed  Google Scholar 

  6. Akilarasan K, Maheshwaran S, Chen TW, Chen SM, Tamilalagan E, Ali MA, Al-onazi WA, Al-Mohaimeed AM (2020) Using cerium (III) orthovanadate as an efficient catalyst for the electrochemical sensing of anti-prostate cancer drug (flutamide) in biological fluids. Microchem J 159:105509. https://doi.org/10.1016/j.microc.2020.105509

    Article  CAS  Google Scholar 

  7. Guo Y, Ngom B, Le T, Jin X, Wang L, Shi D, Wang X, Bi D (2010) Utilizing three monoclonal antibodies in the development of an immunochromatographic assay for simultaneous detection of sulfamethazine, sulfadiazine, and sulfaquinoxaline residues in egg and chicken muscle. Anal Chem 82:7550–7555. https://doi.org/10.1021/ac101020y

    Article  CAS  PubMed  Google Scholar 

  8. Sadeghi S, Motaharian A (2013) Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum. Mater Sci Eng C 33:4884–4891. https://doi.org/10.1016/j.msec.2013.08.001

    Article  CAS  Google Scholar 

  9. Bilandžić N, Kolanović BS, Varenina I, Scortichini G, Annunziata L, Brstilo M, Rudan N (2011) Veterinary drug residues determination in raw milk in Croatia. Food Control 22:1941–1948. https://doi.org/10.1016/j.foodcont.2011.05.007

    Article  CAS  Google Scholar 

  10. Zonaras V, Tyrpenou A, Alexis M, Koupparis M (2016) Determination of sulfadiazine, trimethoprim, and N4-acetyl-sulfadiazine in fish muscle plus skin by liquid chromatography–mass spectrometry. Withdrawal-time calculation after in-feed administration in gilthead sea bream (S parus aurata L.) fed two different diets. J Vet Pharmacol Ther 39:504–513. https://doi.org/10.1111/jvp.12300

    Article  CAS  PubMed  Google Scholar 

  11. You T, Yang X, Wang E (1998) Determination of sulfadiazine and sulfamethoxazole by capillary electrophoresis with end-column electrochemical detection. Analyst 123:2357–2360. https://doi.org/10.1039/A805488F

    Article  CAS  PubMed  Google Scholar 

  12. Reeves VB (1999) Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography–positive chemical ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 723:127–137. https://doi.org/10.1016/S0378-4347(98)00548-9

    Article  CAS  PubMed  Google Scholar 

  13. Lian Z, He X, Wang J (2014) Determination of sulfadiazine in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with a diode-array detector. J Chromatogr B 957:53–59. https://doi.org/10.1016/j.jchromb.2014.02.053

    Article  CAS  Google Scholar 

  14. Gamba V, Terzano C, Fioroni L, Moretti S, Dusi G, Galarini R (2009) Development and validation of a confirmatory method for the determination of sulphonamides in milk by liquid chromatography with diode array detection. Anal Chim Acta 637:18–23. https://doi.org/10.1016/j.aca.2008.09.022

    Article  CAS  PubMed  Google Scholar 

  15. Baere SD, Baert K, Croubels S, Busser JD, Wasch KD, Backer PD (2000) Determination and quantification of sulfadiazine and trimethoprim in swine tissues using liquid chromatography with ultraviolet and mass spectrometric detection. Analyst 125:409–415. https://doi.org/10.1039/A908750H

    Article  PubMed  Google Scholar 

  16. Wang X, Li K, Shi D, Jin X, Xiong N, Peng F, Peng D, Bi D (2007) Development and validation of an immunochromatographic assay for rapid detection of sulfadiazine in eggs and chickens. J Chromatogr B 847:289–295. https://doi.org/10.1016/j.jchromb.2006.10.038

    Article  CAS  Google Scholar 

  17. Gao Z, Luan Y, Lu Y, Zhou Z, Liu T, Li B, Qiu Z, Yang W (2019) Fluorometric determination of sulfadiazine by using molecularly imprinted poly (methyl methacrylate) nanobeads doped with manganese (II)-doped ZnS quantum dots. Microchim Acta 186:1–8. https://doi.org/10.1007/s00604-019-3721-1

    Article  CAS  Google Scholar 

  18. Souza CD, Braga OC, Vieira IC, Spinelli A (2008) Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors Actuators B Chem 135:66–73. https://doi.org/10.1016/j.snb.2008.07.020

    Article  CAS  Google Scholar 

  19. Vinoth S, Govindasamy M, Wang SF, Anandaraj S (2020) Layered nanocomposite of zinc sulfide covered reduced graphene oxide and their implications for electrocatalytic applications. Ultrason Sonochem 64:105036. https://doi.org/10.1016/j.ultsonch.2020.105036

    Article  CAS  PubMed  Google Scholar 

  20. Kogularasu S, Govindasamy M, Chen SM, Akilarasan M, Mani V (2017) 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sensors Actuators B Chem 253:773–783. https://doi.org/10.1016/j.snb.2017.06.172

    Article  CAS  Google Scholar 

  21. Mani V, Selvaraj S, Jeromiyas N, Huang ST, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C, Salama KN (2020) Growth of large-scale MoS2 nanosheets on double layered ZnCo2O4 for real-time in situ H2S monitoring in live cells. J Mater Chem B 8:7453–7465. https://doi.org/10.1039/D0TB01162B

    Article  CAS  PubMed  Google Scholar 

  22. Govindasamy M, Shanthi S, Elaiyappillai E, Wang SF, Johnson PM, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C (2019) Fabrication of hierarchical NiCo2S4@ CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim Acta 293:328–337. https://doi.org/10.1016/j.electacta.2018.10.051

    Article  CAS  Google Scholar 

  23. Sriram B, Baby JN, Wang SF, Govindasamy M, George M, Jothiramalingam R (2020) Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-020-04590-3

    Article  CAS  Google Scholar 

  24. Xiao L, Yang Y, Yin J, Li Q, Zhang L (2009) Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J Power Sources 194:1089–1093. https://doi.org/10.1016/j.jpowsour.2009.06.043

    Article  CAS  Google Scholar 

  25. Wang N, Ma X, Xu H, Chen L, Yue J, Niu F, Yang J, Qian Y (2014) Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6:193–199. https://doi.org/10.1016/j.nanoen.2014.04.001

    Article  CAS  Google Scholar 

  26. Zhang G, Yu L, Wu HB, Hoster HE, Lou XW (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609–4613. https://doi.org/10.1002/adma.201201779

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Huan K, Deng D, Tang L, Wang J, Luo L (2019) Facile synthesis of ZnMn2O4@ rGO microspheres for ultrasensitive electrochemical detection of hydrogen peroxide from human breast cancer cells. ACS Appl Mater Interfaces 12:3430–3437. https://doi.org/10.1021/acsami.9b19126

    Article  CAS  Google Scholar 

  28. Govindasamy M, Wang SF, Almahri A, Rajaji U (2021) Effects of sonochemical approach and induced contraction of core–shell bismuth sulfide/graphitic carbon nitride as an efficient electrode materials for electrocatalytic detection of antibiotic drug in foodstuffs. Ultrason Sonochem 72:105445. https://doi.org/10.1016/j.ultsonch.2020.105445

    Article  CAS  PubMed  Google Scholar 

  29. Rajaji U, Chinnapaiyan S, Chen TW, Chen SM, Mani G, Mani V, Ali MA, Al-Hemaid FM, El-Shikh MS (2021) Rational construction of novel rods-like strontium Hexaferrite decorated graphitic carbon nitrides for highly sensitive detection of neurotoxic organophosphate pesticide in fruits. Electrochim Acta 371:137756. https://doi.org/10.1016/j.electacta.2021.137756

    Article  CAS  Google Scholar 

  30. Kokulnathan T, Kumar EA, Wang TJ, Cheng IC (2021) Strontium tungstate-modified disposable strip for electrochemical detection of sulfadiazine in environmental samples. Ecotoxicol Environ Saf 208:111516. https://doi.org/10.1016/j.ecoenv.2020.111516

    Article  CAS  PubMed  Google Scholar 

  31. Vinay MM, Basavarajappa KV, Manjunatha P, Purushothama HT, Yathisha RO, Nayaka YA (2020) Development of single walled carbon nanotube-molybdenum disulfide nanocomposite/poly-ethylene glycol modified carbon paste electrode as an electrochemical sensor for the investigation of sulfadiazine in biological samples. Anal Bioanal Electrochem 12:155–167

    CAS  Google Scholar 

  32. Sakthivel R, Kubendhiran S, Chen SM, Chen TW, Al-Zaqri N, Alsalme A, Alharthi FA, Khanjer MMA, Tseng TW, Huang CC (2019) Exploring the promising potential of MoS2–RuS2 binary metal sulphide towards the electrocatalysis of antibiotic drug sulphadiazine. Anal Chim Acta 1086:55–65. https://doi.org/10.1016/j.aca.2019.07.073

    Article  CAS  PubMed  Google Scholar 

  33. Braga OC, Campestrini I, Vieira IC, Spinelli A (2010) Sulfadiazine determination in pharmaceuticals by electrochemical reduction on a glassy carbon electrode. J Braz Chem Soc 21:813–820. https://doi.org/10.1590/S0103-50532010000500008

    Article  CAS  Google Scholar 

  34. Diaz TG, Cabanillas AG, Valenzuela MA, Salinas F (1996) Polarographic behaviour of sulfadiazine, sulfamerazine, sulfamethazine and their mixtures. Use of partial least squares in the resolution of the non-additive signals of these compounds Analyst 121:547–552. https://doi.org/10.1039/AN9962100547

  35. Campestrini I, Braga OC, Vieira IC, Spinelli A (2010) Application of bismuth-film electrode for cathodic electroanalytical determination of sulfadiazine. Electrochim Acta 55:4970–4975. https://doi.org/10.1016/j.electacta.2010.03.105

    Article  CAS  Google Scholar 

  36. Msagati TA, Ngila JC (2002) Voltammetric detection of sulfonamides at a poly (3-methylthiophene) electrode. Talanta 58:605–610. https://doi.org/10.1016/S0039-9140(02)00327-2

    Article  CAS  PubMed  Google Scholar 

  37. Hong X, Zhu Y, Ma J (2012) Application of multiwalled carbon nanotubes/ionic liquid modified electrode for amperometric determination of sulfadiazine. Drug Test Anal 4:1034–1039. https://doi.org/10.1002/dta.329

    Article  CAS  PubMed  Google Scholar 

  38. Kokulnathan T, Ashok Kumar E, Wang TJ (2020) Design and in situ synthesis of titanium carbide/boron nitride nanocomposite: investigation of electrocatalytic activity for the sulfadiazine sensor. ACS Sustain Chem Eng 8:12471–12481. https://doi.org/10.1021/acssuschemeng.0c03281

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Technology (Special Research Project-MOST-108-2221-E-027-063). This work was funded by the Researchers Supporting Project Number (RSP-2020/265) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mani Govindasamy, Sea-Fue Wang or Razan A. Alshgari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinoth, S., Govindasamy, M., Wang, SF. et al. Hydrothermally synthesized cubical zinc manganite nanostructure for electrocatalytic detection of sulfadiazine. Microchim Acta 188, 131 (2021). https://doi.org/10.1007/s00604-021-04768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04768-3

Keywords

Navigation