Skip to main content

Advertisement

Log in

Molecularly imprinted curcumin nanoparticles decorated paper for electrochemical and fluorescence dual-mode sensing of bisphenol A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly imprinted paper-based analytical device (MIP-μPAD) was developed for the sensing of bisphenol A (BPA). The platform was screen-printed onto a filter paper support, where the electrodes and the fluorescence μPADs were designed. Owing to its dual electrochemical and fluorescence responses, molecularly imprinted curcumin nanoparticles were used to sense BPA. The μPAD design was characterized by transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, and electrochemical techniques. The sensor design comprised a wide linear range from 1 to 200 μg L−1 with limits of detection of 0.47 ± 0.2 and 0.62 ± 0.3 μg L−1 (LOD, S/N = 3) for electrochemical and fluorescence sensing, respectively. Furthermore, the system showed good analytical performance such as selectivity, stability, and reproducibility. The feasibility of the MIP-μPAD was demonstrated for the sensing of BPA in seawater, foods, and polycarbonate plastic packaged water with recovery values of 97.2 and 101.8%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177. https://doi.org/10.1016/j.reprotox.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  2. Lin X, Cheng C, Terry P, Chend J, Cui H, Wu J (2017) Rapid and sensitive detection of bisphenol A from serum matrix. Biosens Bioelectron 91:104–109. https://doi.org/10.1016/j.bios.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  3. Yang Q, Wu X, Peng H, Fu L, Song X, Li J, Xiong H, Chen L (2018) Simultaneous phase-inversion and imprinting based sensor for highly sensitive and selective detection of bisphenol A. Talanta 176:595–603. https://doi.org/10.1016/j.talanta.2017.08.075

    Article  CAS  PubMed  Google Scholar 

  4. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95. https://doi.org/10.1210/er.2008-0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lopardo L, Petrie B, Proctor K, Youdan J, Barden R, Kasprzyk-Hordern B (2019) Estimation of community-wide exposure to bisphenol A via water fingerprinting. Environ Int 125:1–8. https://doi.org/10.1016/j.envint.2018.12.048

    Article  CAS  PubMed  Google Scholar 

  6. Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, Neretin L, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99. https://doi.org/10.1016/j.envint.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  7. Jorge R, Thomas W (2015) Determination of bisphenols in beverages by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1422:230–238. https://doi.org/10.1016/j.chroma.2015.10.046

    Article  CAS  Google Scholar 

  8. Kawaguchi M, Ito R, Endo N, Okanouchi N, Sakui N, Saito K, Nakazawa H (2006) Liquid phase microextraction with in situ derivatization for measurement of bisphenol A in river water sample by gas chromatography-mass spectrometry. J Chromatogr A 1110:1–5. https://doi.org/10.1016/j.chroma.2006.01.061

    Article  CAS  PubMed  Google Scholar 

  9. Miao W, Wei B, Yang R, Wu C, Lou D, Jiang W, Zhou Z (2014) Highly specific and sensitive detection of bisphenol A in water samples using an enzyme-linked immunosorbent assay employing a novel synthetic antigen. New J Chem 38:669–675. https://doi.org/10.1039/C3NJ01094E

    Article  CAS  Google Scholar 

  10. Xue F, Wu J, Chu H, Mei Z, Ye Y, Liu J, Zhang R, Peng C, Zheng L, Chen W (2013) Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta 180:109–115. https://doi.org/10.1007/s00604-012-0909-z

    Article  CAS  Google Scholar 

  11. Ren X, Cheshari EC, Qi J, Li X (2018) Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Microchim Acta 185:242. https://doi.org/10.1007/s00604-018-2772-z

    Article  CAS  Google Scholar 

  12. Ballesteros-Gómez A, Ruiz FJ, Rubio S, Pérez-Bendito D (2007) Determination of bisphenols a and F and their diglycidyl ethers in wastewater and river water by coacervative extraction and liquid chromatography-fluorimetry. Anal Chim Acta 603:51–59. https://doi.org/10.1016/j.aca.2007.09.048

    Article  CAS  PubMed  Google Scholar 

  13. Goulart LA, Gonçalves R, Correa AA, Pereira EC, Mascaro LH (2018) Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchim Acta 185:12. https://doi.org/10.1007/s00604-017-2540-5

    Article  CAS  Google Scholar 

  14. Yin H, Zhou Y, Ai S, Chen Q, Zhu X, Liu X, Zhou L (2010) Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode. J Hazard Mater 174:236–243. https://doi.org/10.1016/j.jhazmat.2009.09.041

    Article  CAS  PubMed  Google Scholar 

  15. Fizir M, Richa A, He H, Touil S, Brada M, Fizir L (2020) A mini review on molecularly imprinted polymer based halloysite nanotubes composites: innovative materials for analytical and environmental applications. Rev Environ Sci Biotechnol 19:241–258. https://doi.org/10.1007/s11157-020-09537-x

    Article  CAS  Google Scholar 

  16. Üzek R, Sari E, Şenel S, Denizli A, Merkoçi A (2019) A nitrocellulose paper strip for fluorometric determination of bisphenol A using molecularly imprinted nanoparticles. Microchim Acta 186:218. https://doi.org/10.1007/s00604-019-3323-y

    Article  CAS  Google Scholar 

  17. Kamel AH, Jiang X, Li P, Liang R (2018) A paper-based potentiometric sensing platform based on molecularly imprinted nanobeads for determination of bisphenol A. Anal Methods 10:3890–3895. https://doi.org/10.1039/C8AY01229F

    Article  CAS  Google Scholar 

  18. Wu Y, Liu Y, Gao K, Xia H, Luo M, Wang X, Ye L, Shi Y, Lu B (2015) Monitoring bisphenol A and its biodegradation in water using a fluorescent molecularly imprinted chemosensor. Chemosphere 119:515–523. https://doi.org/10.1016/j.chemosphere.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  19. Iqbal A, Tian Y, Wang X, Gong D, Guo Y, Iqbal K, Wang Z, Liu W, Qin W (2016) Carbon dots prepared by solid state method via citric acid and 1,10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+. Sensors Actuators B 237:408–415. https://doi.org/10.1016/j.snb.2016.06.126

    Article  CAS  Google Scholar 

  20. Wu X, Zhang Z, Li J, You H, Li Y, Chen L (2015) Molecularly imprinted polymers-coated gold nanoclusters for fluorescent detection of bisphenol A. Sensors Actuators B 211:507–514. https://doi.org/10.1016/j.snb.2015.01.115

    Article  CAS  Google Scholar 

  21. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem Acta 82:3–10. https://doi.org/10.1021/ac9013989

    Article  CAS  Google Scholar 

  22. Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)-a review. Anal Chim Acta 970:1–22. https://doi.org/10.1016/j.aca.2017.03.037

    Article  CAS  PubMed  Google Scholar 

  23. Weng X, Neethirajan S (2017) Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim Acta 184:4545–4552. https://doi.org/10.1007/s00604-017-2467-x

    Article  CAS  Google Scholar 

  24. Bhardwaj J, Devarakonda S, Kumar S, Jang J (2017) Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sensors Actuators B Chem 253:115–123. https://doi.org/10.1016/j.snb.2017.06.108

    Article  CAS  Google Scholar 

  25. Kong Q, Wang Y, Zhang L, Ge S, Yu J (2017) A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sensors Actuators B Chem 243:130–136. https://doi.org/10.1016/j.snb.2016.11.146

    Article  CAS  Google Scholar 

  26. Jemmeli D, Marcoccio E, Moscone D, Dridi C, Arduini F (2020) Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 216:120924. https://doi.org/10.1016/j.talanta.2020.120924

    Article  CAS  PubMed  Google Scholar 

  27. Pandit R, Gaikwad S, Agarkar G, Gade A, Rai M (2015) Curcumin nanoparticles: physico-chemical fabrication and its in vitro efficacy against human pathogens. 3. Biotech 5(6):991–997. https://doi.org/10.1007/s13205-015-0302-9

    Article  Google Scholar 

  28. Zhang J, Yang Z, Liu Q, Liang H (2019) Electrochemical biotoxicity detection on a microfluidic paper-based analytical device via cellular respiratory inhibition. Talanta 202:384–391. https://doi.org/10.1016/j.talanta.2019.05.031

    Article  CAS  PubMed  Google Scholar 

  29. Cinti S, Arduini F, Vellucci G, Cacciotti I, Nanni F, Moscone D (2014) Carbon black assisted tailoring of Prussian blue nanoparticles to tune sensitivity and detection limit towards H2O2 by using screen-printed electrode. Electrochem Commun 47:63–66. https://doi.org/10.1016/j.elecom.2014.07.018

    Article  CAS  Google Scholar 

  30. Kumar S, Bhushan P, Bhattacharya S (2019) Fluid transport mechanisms in paper-based microfluidic devices. Springer. https://doi.org/10.1007/978-981-15-0489-1_2

  31. Butmee P, Tumcharern G, Saejueng P, Stankovic D, Ortner A, Jitcharoen J, Kalcher K, Samphao A (2019) A direct and sensitive electrochemical sensing platform based on ionic liquid functionalized graphene nanoplatelets for the detection of bisphenol A. Jeac 833:370–379. https://doi.org/10.1016/j.jelechem.2018.12.014

    Article  CAS  Google Scholar 

  32. Tang RH, Liu LN, Zhang SF, He X, Li XJ, Xu F, Ni YH, Li F (2019) A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim Acta 186:521. https://doi.org/10.1007/s00604-019-3626-z

    Article  CAS  Google Scholar 

  33. Mejri A, Mars A, Elfil H, Hamzaoui AH (2019) Reduced graphene oxide nanosheets modified with nickel disulfide and curcumin nanoparticles for non-enzymatic electrochemical sensing of methyl parathion and 4-nitrophenol. Microchim Acta 186:704. https://doi.org/10.1007/s00604-019-3853-3

    Article  CAS  Google Scholar 

  34. Fan H, Li Y, Wu D, Ma H, Mao K, Fan D, Du B, Li H, Wei Q (2012) Electrochemical bisphenol A sensor based on N-doped graphene sheets. Anal Chim Acta 711:24–28. https://doi.org/10.1016/j.aca.2011.10.051

    Article  CAS  PubMed  Google Scholar 

  35. Zheng Z, Du Y, Wang Z, Feng Q, Wang C (2013) Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers. Analyst 138:693–701. https://doi.org/10.1039/C2AN36569C

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the Tunisian Ministry of High Education and Scientific Research for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmoneim Mars.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mars, A., Mejri, A., Hamzaoui, A.H. et al. Molecularly imprinted curcumin nanoparticles decorated paper for electrochemical and fluorescence dual-mode sensing of bisphenol A. Microchim Acta 188, 94 (2021). https://doi.org/10.1007/s00604-021-04753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04753-w

Keywords

Navigation