Skip to main content
Log in

Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The aim of this conceptual review is to cover recent developments of light-propelled micromotors for analytical (bio)-sensing. Challenges of self-propelled light-driven micromotors in complex (biological) media and potential solutions from material aspects and propulsion mechanism to achieve final analytical detection for in vivo and in vitro applications will be comprehensively covered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

CV:

Crystal violet

DOX:

Doxorubicin

FITC:

Fluorescein isothiocyanate

GO:

Graphene oxide

QDs:

Quantum dots

MCF-7:

Michigan Cancer Foundation-7 cancer cell line

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NIR:

Near infrared

NW:

Nanowire

PCL:

Polycaprolactone

PDMS:

Polydimethylsiloxane

PPy:

Polypyrrole

PVA:

Polyvinyl alcohol

rGO:

Reduced graphene oxide

SEM:

Scanning-electron microscopy

SERS:

Surface enhanced Raman scattering

UV:

Ultraviolet

VIS:

Visible

2D:

Two-dimensional

References

  1. Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A (2005) Dream nanomachines. Adv Mater 17:3011–3018

    CAS  Google Scholar 

  2. Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM, Flechsig G-U, Wang J (2009) Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J Am Chem Soc 131:12082–12083

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanchez S, Pumera M (2009) Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. Chem Asian J 4:1402–1410

    CAS  PubMed  Google Scholar 

  4. Ebbens SJ, Howse JR (2010) In pursuit of propulsion at the nanoscale. Soft Matter 6:726–738

  5. Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6:338–345

    CAS  PubMed  Google Scholar 

  6. Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–1692

    CAS  PubMed  Google Scholar 

  7. Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig GU, Wang J (2011) Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett 11:2083–2087

    CAS  PubMed  Google Scholar 

  8. Mei Y, Solovev AA, Sanchez S, Schmidt OG (2011) Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev 40:2109–2119

    CAS  PubMed  Google Scholar 

  9. Abdelmohsen LKEA, Peng F, Tu Y, Wilson DA (2014) Micro- and nano-motors for biomedical applications. J Mater Chem B 2:2395–2408

    CAS  Google Scholar 

  10. Gao W, Wang J (2014) Synthetic micro/nanomotors in drug delivery. Nanoscale 6:10486–10494

    CAS  PubMed  Google Scholar 

  11. Duan W, Wang W, Das S, Yadav V, Mallouk TE, Sen A (2015) Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu Rev Anal Chem 8:311–333

    Google Scholar 

  12. Singh VV, Wang J (2015) Nano/micromotors for security/defense applications. A review. Nanoscale 7:19377–19389

  13. Li J, Rozen I, Wang J (2016) Rocket science at the nanoscale. ACS Nano 10:5619–5634

    CAS  PubMed  Google Scholar 

  14. Jurado-Sánchez B, Wang J (2018) Micromotors for environmental applications: a review. Environ Sci Nano 5:1530–1544

    Google Scholar 

  15. Gao W, Sattayasamitsathit S, Orozco J, Wang J (2011) Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc 133:11862–11864

    CAS  PubMed  Google Scholar 

  16. Karshalev E, Esteban-Fernández de Ávila B, Wang J (2018) Micromotors for “Chemistry-on-the-Fly”. J Am Chem Soc 140:3810–3820

  17. Jurado-Sánchez B, Escarpa A (2016) Milli, micro and nanomotors: novel analytical tools for real-world applications. Trends Anal Chem 84:48–59

    Google Scholar 

  18. Jurado-Sánchez B, Escarpa A (2017) Janus micromotors for electrochemical sensing and biosensing applications: a review. Electroanalysis 29:14–23

    Google Scholar 

  19. Jurado-Sánchez B, Pacheco M, Maria-Hormigos R, Escarpa A (2017) Perspectives on Janus micromotors: materials and applications. Appl Mater Today 9:407–418

    Google Scholar 

  20. Pacheco M, López MÁ, Jurado-Sánchez B, Escarpa A (2019) Self-propelled micromachines for analytical sensing: a critical review. Anal Bioanal Chem 411:6561–6573

    CAS  PubMed  Google Scholar 

  21. Dey KK, Wong F, Altemose A, Sen A (2016) Catalytic motors-Quo Vadimus? Curr Opin Colloid Interface Sci 21:4–13

    CAS  Google Scholar 

  22. Chen C, Karshalev E, Li J, Soto F, Castillo R, Campos I, Mou F, Guan J, Wang J (2016) Transient micromotors that disappear when no longer needed. ACS Nano 10:10389–10396

    CAS  PubMed  Google Scholar 

  23. Chen C, Karshalev E, Guan J, Wang J (2018) Magnesium-based micromotors: water-powered propulsion, multifunctionality, and biomedical and environmental applications. Small 14:1704252

    Google Scholar 

  24. Kong L, Rohaizad N, Nasir MZM, Guan J, Pumera M (2019) Micromotor-assisted human serum glucose biosensing. Anal Chem 91:5660–5666

    CAS  PubMed  Google Scholar 

  25. Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J (2015) Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9:117–123

    CAS  PubMed  Google Scholar 

  26. Esteban-Fernández de Ávila B, Angsantikul P, Li J, Angel Lopez-Ramirez M, Ramírez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L, Wang J (2017) Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun 8:272

    Google Scholar 

  27. Esteban-Fernández de Ávila B, Lopez-Ramirez MA, Mundaca-Uribe R, Wei X, Ramírez-Herrera DE, Karshalev E, Nguyen B, Fang RH, Zhang L, Wang J (2020) Multicompartment tubular micromotors toward enhanced localized active delivery. Adv Mater 32:2000091

  28. Salinas G, Dauphin AL, Voci S, Bouffier L, Sojic N, Kuhn A (2020) Asymmetry controlled dynamic behavior of autonomous chemiluminescent Janus microswimmers. Chem Sci 11:7438–7443

  29. Chen X-Z, Hoop M, Mushtaq F, Siringil E, Hu C, Nelson BJ, Pané S (2017) Recent developments in magnetically driven micro- and nanorobots. Appl Mater Today 9:37–48

    Google Scholar 

  30. Xu T, Xu L-P, Zhang X (2017) Ultrasound propulsion of micro−/nanomotors. Appl Mater Today 9:493–503

    Google Scholar 

  31. Loget G, Kuhn A (2010) Propulsion of microobjects by dynamic bipolar self-regeneration. J Am Chem Soc 132:15918–15919

  32. Loget G, Kuhn A (2011) Electric field-induced chemical locomotion of conducting objects. Nat Commun 2:535

  33. Roche J, Carrara S, Sanchez J, Lannelongue J, Loget G, Bouffier L, Fischer P, Kuhn A (2014) Wireless powering of e -swimmers. Sci Rep 4:6705

  34. Wang J, Xiong Z, Zheng J, Zhan X, Tang J (2018) Light-driven micro/nanomotor for promising biomedical tools: principle, challenge, and prospect. Acc Chem Res 51:1957–1965

    CAS  PubMed  Google Scholar 

  35. Villa K, Pumera M (2019) Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chem Soc Rev 48:4966–4978

    CAS  PubMed  Google Scholar 

  36. Dong R, Cai Y, Yang Y, Gao W, Ren B (2018) Photocatalytic micro/nanomotors: from construction to applications. Acc Chem Res 51:1940–1947

    CAS  PubMed  Google Scholar 

  37. Xu L, Mou F, Gong H, Luo M, Guan J (2017) Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev 46:6905–6926

    CAS  PubMed  Google Scholar 

  38. Yuan K, de la Asunción-Nadal V, Jurado-Sánchez B, Escarpa A (2020) 2D Nanomaterials wrapped janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion. Chem Mater 32:1983–1992

    CAS  Google Scholar 

  39. María Hormigos R, Jurado Sánchez B, Escarpa A (2019) Multi-light-responsive quantum dot sensitized hybrid micromotors with dual-mode propulsion. Angew Chem Int Ed 58:3128–3132

    Google Scholar 

  40. Chen C, Tang S, Teymourian H, Karshalev E, Zhang F, Li J, Mou F, Liang Y, Guan J, Wang J (2018) Chemical/light-powered hybrid micromotors with “on-the-fly” optical brakes. Angew Chem Int Ed 57:8110–8114

  41. Zhou X, Li Z, Tan L, Zhang Y, Jiao Y (2020) Near-infrared light-steered graphene aerogel micromotor with high speed and precise navigation for active transport and microassembly. ACS Appl Mater Interfaces 12:23134–23144

  42. Sun Y, Liu Y, Song B, Zhang H, Duan R, Zhang D, Dong B (2019) A light-driven micromotor with complex motion behaviors for controlled release. Adv Mater Interfaces 6:1801965

  43. Deng Z, Mou F, Tang S, Xu L, Luo M, Guan J (2018) Swarming and collective migration of micromotors under near infrared light. Appl Mater Today 13:45–53

    Google Scholar 

  44. Xuan M, Wu Z, Shao J, Dai L, Si T, He Q (2016) Near infrared light-powered janus mesoporous silica nanoparticle motors. J Am Chem Soc 138:6492–6497

    CAS  PubMed  Google Scholar 

  45. Liang Y, Xu Y, Ye W, Yao D, Chen Y, Wang C (2018) Multi-stage hydrogel rockets with stage dropping-off by thermal/light stimulation. J Mater Chem A 6:16838–16843

    CAS  Google Scholar 

  46. Liu W, Wang W, Dong X, Sun Y (2020) Near-infrared light-powered janus nanomotor significantly facilitates inhibition of amyloid-β fibrillogenesis. ACS Appl Mater Interfaces 12:12618–12628

  47. Xuan M, Shao J, Lin X, Dai L, He Q (2015) Light-activated Janus self-assembled capsule micromotors. Coll Surf A Physicochem Eng Asp 482:92–97

  48. Kim JT, Choudhury U, Jeong H-H, Fischer P (2017) Nanodiamonds that swim. Adv Mater 29:1701024

  49. Wolff N, Ciobanu V, Enachi M, Kamp M, Braniste T, Duppel V, Shree S, Raevschi S, Medina-Sánchez M, Adelung R, Schmidt OG, Kienle L, Tiginyanu I (2020) Advanced hybrid GaN/ZnO nanoarchitectured microtubes for fluorescent micromotors driven by UV light. Small 16:1905141

    CAS  Google Scholar 

  50. Wang Y, Zhou C, Wang W, Xu D, Zeng F, Zhan C, Gu J, Li M, Zhao W, Zhang J, Guo J, Feng H, Ma X (2018) Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing. Angew Chem Int Ed 57:13110–13113

    CAS  Google Scholar 

  51. Pacheco M, Jurado-Sánchez B, Escarpa A (2019) Visible-light-driven janus microvehicles in biological media. Angew Chem Int Ed 58:18017–18024

    CAS  Google Scholar 

  52. Wang Q, Dong R, Yang Q, Wang J, Xu S, Cai Y (2020) Highly efficient visible-light-driven oxygen-vacancy-based Cu2+1O micromotors with biocompatible fuels. Nanoscale Horiz 5:325–330

    CAS  Google Scholar 

  53. Villa K, Novotný F, Zelenka J, Browne MP, Ruml T, Pumera M (2019) Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano 13:8135–8145

    CAS  PubMed  Google Scholar 

  54. Villa K, Vyskočil J, Ying Y, Zelenka J, Pumera M (2020) Microrobots in brewery: dual magnetic/light-powered hybrid microrobots for preventing microbial contamination in beer. Chem Eur J 26:3039–3043

    CAS  PubMed  Google Scholar 

  55. Wang Q, Dong R, Wang C, Xu S, Chen D, Liang Y, Ren B, Gao W, Cai Y (2019) Glucose-fueled micromotors with highly efficient visible-light photocatalytic propulsion. ACS Appl Mater Interfaces 11(6):6201–6207

    CAS  PubMed  Google Scholar 

  56. Zhou D, Li YC, Xu P, Ren L, Zhang G, Mallouk TE, Li L (2017) Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 9:11434–11438

    CAS  PubMed  Google Scholar 

  57. Sridhar V, Park B-W, Guo S, van Aken PA, Sitti M (2020) Multiwavelength-steerable visible-light-driven magnetic CoO–TiO2 microswimmers. ACS Appl Mater Interfaces 12:24149–24155

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang J, Xiong Z, Liu M, Li X-M, Zheng J, Zhan X, Ding W, Chen J, Li X, Li XD, Feng S-P, Tang J (2020) Rational design of reversible redox shuttle for highly efficient light-driven microswimmer. ACS Nano 14:3272–3280

  59. Villa K, Manzanares Palenzuela CL, Sofer Z, Matějková S, Pumera M (2018) Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12:12482–12491

    CAS  PubMed  Google Scholar 

  60. Xu Z, Chen M, Lee H, Feng S-P, Park JY, Lee S, Kim JT (2019) X-ray-powered micromotors. ACS Appl Mater Interfaces 11:15727–15732

    CAS  PubMed  Google Scholar 

  61. Liang X, Mou F, Huang Z, Zhang J, You M, Xu L, Luo M, Guan J (2020) Hierarchical microswarms with leader–follower-like structures: electrohydrodynamic self-organization and multimode collective photoresponses. Adv Funct Mater 30:1908602

    CAS  Google Scholar 

  62. Jiang S, Kaltbeitzel A, Hu M, Suraeva O, Crespy D, Landfester K (2020) One-step preparation of fuel-containing anisotropic nanocapsules with stimuli-regulated propulsion. ACS Nano 14:498–508

    CAS  PubMed  Google Scholar 

  63. Zhou D, Gao Y, Yang J, Li YC, Shao G, Zhang G, Li T, Li L (2018) Light-ultrasound driven collective “firework” behavior of nanomotors. Adv Sci 5:1800122

    Google Scholar 

  64. Zhang Q, Dong R, Chang X, Ren B, Tong Z (2015) Spiropyran-decorated SiO2–Pt Janus micromotor: preparation and light-induced dynamic self-assembly and disassembly. ACS Appl Mater Interfaces 7:24585–24591

    CAS  PubMed  Google Scholar 

  65. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    CAS  Google Scholar 

  66. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu Z, Si T, Gao W, Lin X, Wang J, He Q (2016) Superfast near-infrared light-driven polymer multilayer rockets. Small 12:577–582

    CAS  PubMed  Google Scholar 

  68. Wu Y, Si T, Shao J, Wu Z, He Q (2016) Near-infrared light-driven Janus capsule motors: fabrication, propulsion, and simulation. Nano Res 9:3747–3756

    Google Scholar 

  69. Rao Q, Si T, Wu Z, Xuan M, He Q (2017) A light-activated explosive micropropeller. Sci Rep 7:4621

  70. Jang B, Hong A, Kang HE, Alcantara C, Charreyron S, Mushtaq F, Pellicer E, Büchel R, Sort J, Lee SS, Nelson BJ, Pané S (2017) Multiwavelength light-responsive Au/B-TiO2 janus micromotors. ACS Nano 11:6146–6154

    CAS  PubMed  Google Scholar 

  71. Wang W, Duan W, Ahmed S, Mallouk TE, Sen A (2013) Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–554

    CAS  Google Scholar 

  72. Dai B, Wang J, Xiong Z, Zhan X, Dai W, Li C-C, Feng S-P, Tang J (2016) Programmable artificial phototactic microswimmer. Nature Nanotech 11:1087–1092

Download references

Code availability

Not applicable.

Funding

This research was funded by the Spanish Ministry of Economy, Industry and Competitiveness, grant numbers CTQ2017-86441-C2-1-R (A.E) and RYC-2015-17558 co-financed by EU (B.J.S, K.Y); the Community of Madrid, grant numbers TRANSNANOAVANSENS, S2018/NMT-4349 (A.E), and CM/JIN/2019-007 (B.J.S, J. B.F); and the Universidad de Alcalá, grant number CCG19/CC-029 (B.J.S).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K. Y., J. B.F., B. J. S. and A. E.; writing-original draft preparation, K. Y., J. B. F., B. J. S.; writing—review and editing, K. Y., J. B.F., B. J. S. and A. E.; supervision, B. J. S. and A. E.; funding acquisition, B. J. S. and A. E. K. Y. and J. B. F. contributed equally to this review.

Corresponding authors

Correspondence to Beatriz Jurado-Sánchez or Alberto Escarpa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, K., Bujalance-Fernández, J., Jurado-Sánchez, B. et al. Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Microchim Acta 187, 581 (2020). https://doi.org/10.1007/s00604-020-04541-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04541-y

Keywords

Navigation