Skip to main content
Log in

Ultrasound supported synthesis of tantalum carbide integrated functionalized carbon composite for the voltammetric determination of the antibacterial drug nitrofurantoin in pharmaceutical samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The synthesis and fabrication of oval-shaped tantalum carbide (Ta-C) integrated functionalized-multiwalled carbon nanotube (Ta-C/f-MWCNT) as an electrocatalyst for the electrochemical determination of nitrofurantoin (NFT) is described. The Ta-C/f-MWCNT composite was prepared using the soft-template method followed by the ultrasonication process. The as-prepared Ta-C/f-MWCNT composite was characterized using powder X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), scanning transmission electron microscopy (STEM), and X-ray photoelectron spectroscopy (XPS) analysis. The electrochemical properties of Ta-C/f-MWCNT were investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The Ta-C/f-MWCNT-modified glassy carbon electrode (Ta-C/f-MWCNT/GCE) was successfully utilized as an active electrocatalyst for the detection of NFT in the presence of 0.384 mM NFT containing 0.05 M phosphate buffer (pH 7) at a scan rate of 50 mV/s. The Ta-C/f-MWCNT/GCE exhibited a wide linear response range (0.04–1047 μM) and a low detection limit (0.0011 μM). Further, the Ta-C/f-MWCNT/GCE showed appreciable results for repeatability, reproducibility, and long-term cyclic stability towards NFT sensing. The Ta-C/f-MWCNT/GCE was applied to real sample analysis such as a commercial tablet and human urine samples. The Ta-C/f-MWCNT/GCE exhibited good recovery values for the tablet (105 to 115%) and urine (101–107%) samples. The above electrochemical results suggest that the Ta-C/f-MWCNT is a promising electrocatalyst for the electrochemical sensing of NFT drug.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kalambate PK, Gadhari NS, Li X, Rao Z, Navale ST, Shen Y, Patil VR, Huang Y (2019) Recent advances in MXene–based electrochemical sensors and biosensors. TrAC Trends Anal Chem 120:115643

    Article  CAS  Google Scholar 

  2. Zang X, Jian C, Zhu T et al (2019) Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat Commun 10:1–8

    Article  CAS  Google Scholar 

  3. Jin J, Wei Z, Qiao X, Fan H, Cui L (2017) Substrate-mediated growth of vanadium carbide with controllable structure as high performance electrocatalysts for dye-sensitized solar cells. RSC Adv 7:26710–26716

    Article  CAS  Google Scholar 

  4. Ham DJ, Lee JS (2009) Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2:873–899

    Article  CAS  Google Scholar 

  5. Zhai S, Wei L, Karahan HE, Chen X, Wang C, Zhang X, Chen J, Wang X, Chen Y (2019) 2D materials for 1D electrochemical energy storage devices. Energy Storage Mater 19:102–123

    Article  Google Scholar 

  6. Gao W, Shi Y, Zhang Y, Zuo L, Lu H, Huang Y, Fan W, Liu T (2016) Molybdenum carbide anchored on graphene nanoribbons as highly efficient all-pH hydrogen evolution reaction electrocatalyst. ACS Sustain Chem Eng 4:6313–6321

    Article  CAS  Google Scholar 

  7. Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1:589–594

    Article  CAS  Google Scholar 

  8. Zhang X, Zhang Z, Zhou Z (2018) MXene-based materials for electrochemical energy storage. J Energy Chem 27:73–85

    Article  Google Scholar 

  9. Barsoum MW, (2000) ) The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Progress in solid state chemistry. 28:201–281

  10. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) Two-dimensional materials: 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced J Adv Mater 26:992–1005

    Article  CAS  Google Scholar 

  11. Annalakshmi M, Balasubramanian P, Chen SM, Chen TW (2019) Enzyme-free electrocatalytic sensing of hydrogen peroxide using a glassy carbon electrode modified with cobalt nanoparticle-decorated tungsten carbide. Microchim Acta 186:265

    Article  CAS  Google Scholar 

  12. Neampet S, Ruecha N, Qin J, Wonsawat W, Chailapakula O, Rodthongkum N (2019) A nanocomposite prepared from platinum particles, polyaniline and a Ti3C2 MXene for amperometric sensing of hydrogen peroxide and lactate. Microchim Acta 186:752

    Article  CAS  Google Scholar 

  13. Syamsai R, Grace AN (2019) Ta4C3 MXene as supercapacitor electrodes. J Alloys Compd 792:1230–1238

    Article  CAS  Google Scholar 

  14. Kondaiah P, Niranjan K, John S, Barshilia HC (2019) Tantalum carbide based spectrally selective coatings for solar thermal absorber applications. Sol Energy Mater Sol Cells 198:26–34

    Article  CAS  Google Scholar 

  15. Cui ZW, Li XK, Cong Y, Dong ZJ, Yuan GM, Zhang J (2017) Synthesis of tantalum carbide from multiwall carbon nanotubes in a molten salt medium. Xinxing Tan Cailiao/New Carbon Mater 32:205–212

    Article  Google Scholar 

  16. Tai LC, Liaw TS, Lin Y, Nyein HYY, Bariya M, Ji MW, Hettick M, Zhao C, Zhao J, Hou L, Yuan Z, Fan Z, Javey A (2019) Wearable sweat band for non-invasive levodopa monitoring. Nano Lett 19:6346–6351

    Article  CAS  PubMed  Google Scholar 

  17. Yuan Z, Hou L, Bariya M, Nyein HYY, Tai LT, Ji W, Li L, Javey A (2019) A multi-modal sweat sensing patch for cross verification of sweat rate, total ionic charge, and Na+ concentration. Lab Chip 19:3179–3189

    Article  CAS  PubMed  Google Scholar 

  18. Theerthagiri J, Durai G, Karuppasamy K, Arunachalam P, Elakkiya V, Kuppusami P, Maiyalagan T, Kim HS (2018) Recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides electrodes for electrochemical supercapacitors – a brief review. J Ind Eng Chem 67:12–27

    Article  CAS  Google Scholar 

  19. Ma J, Guo X, Xue H, Pan K, Liu C, Pang H (2020) Niobium/tantalum-based materials: synthesis and applications in electrochemical energy storage. Chem Eng J 380:122428

    Article  CAS  Google Scholar 

  20. Kokulnathan T, Ramaraj S, Chen SM, Han-Yu Y (2018) Eco-friendly synthesis of biocompatible pectin stabilized graphene nanosheets hydrogel and their application for the simultaneous electrochemical determination of dopamine and paracetamol in real samples. J Electrochem Soc 165:B240–B249

    Article  CAS  Google Scholar 

  21. Sakthivel M, Sukanya R, Chen SM, Ho KC (2018) Synthesis and characterization of samarium-substituted molybdenum diselenide and its graphene oxide nanohybrid for enhancing the selective sensing of chloramphenicol in a milk sample. ACS Appl Mater Interfaces 10:29712–29723

    Article  CAS  PubMed  Google Scholar 

  22. Sukanya R, Sakthivel M, Chen SM, Chen TW (2018) A new type of terbium diselenide nano octagon integrated oxidized carbon nanofiber: an efficient electrode material for electrochemical detection of morin in the food sample. Sensors Actuators B Chem 269:354–367

    Article  CAS  Google Scholar 

  23. Masikini M, Ghica ME, Baker PGL, et al (2019) Electrochemical sensor based on multi-walled carbon nanotube/gold nanoparticle modified glassy carbon electrode for detection of estradiol in environmental samples. Electroanalysis 13:1925-1933

  24. Hou L, Bi S, Lan B, Zhao H, Zhu L, Xu Y, Lu Y (2019) A novel and ultrasensitive nonenzymatic glucose sensor based on pulsed laser scribed carbon paper decorated with nanoporous nickel network. Analytica Chim Acta 1082:165–175

    Article  CAS  Google Scholar 

  25. Younas M, Gondal MA, Dastageer MA, Harrabi K (2019) Efficient and cost-effective dye-sensitized solar cells using MWCNT-TiO2 nanocomposite as photoanode and MWCNT as Pt-free counter electrode. Sol Energy 188:1178–1188

    Article  CAS  Google Scholar 

  26. Ramesh S, Karuppasamy K, Yadav HM et al (2019) Ni(OH) 2 -decorated nitrogen doped MWCNT nanosheets as an efficient electrode for high performance supercapacitors. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  27. Parreira LS, Antoniassi RM, Freitas IC, de Oliveira DC, Spinacé EV, Camargo PHC, dos Santos MC (2019) MWCNT-COOH supported PtSnNi electrocatalysts for direct ethanol fuel cells: low Pt content, selectivity and chemical stability. Renew Energy 143:1397–1405

    Article  CAS  Google Scholar 

  28. Li Y, Gao Y, Cao Y, Li H (2012) Electrochemical sensor for bisphenol A determination based on MWCNT/melamine complex modified GCE. Sensors Actuators B Chem 171–172:726–733

    Article  CAS  Google Scholar 

  29. Mithin Kumar S, Arun S, Mayavan S (2019) Effect of carbon nanotubes with varying dimensions and properties on the performance of lead acid batteries operating under high rate partial state of charge conditions. J Energy Storage 24:100806

    Article  Google Scholar 

  30. Mohl M, Kónya Z, Kukovecz Á, Kiricsi I Functionalization of multi-walled carbon nanotubes (MWCNTS). Functionalized nanoscale materials, devices and systems 365–368

  31. Xie Y, Gao F, Tu X, et al (2019) Flake-like neodymium molybdate wrapped with multi-walled carbon nanotubes as an effective electrode material for sensitive electrochemical detection of carbendazim. J Electroanal Chem 855:113468

  32. Ramki S, Sukanya R, Chen S-M, Sakthivel M (2019) Hierarchical multi-layered molybdenum carbide encapsulated oxidized carbon nanofiber for selective electrochemical detection of antimicrobial agents: inter-connected path in multi-layered structure for efficient electron transfer. Inorg Chem Front 6:1680–1693

    Article  CAS  Google Scholar 

  33. Ramki S, Sukanya R, Chen SM, Sakthivel M, Ye YT (2019) Electrochemical detection of toxic anti-scald agent diphenylamine using oxidized carbon nanofiber encapsulated titanium carbide electrocatalyst. J Hazard Mater 368:760–770

    Article  CAS  PubMed  Google Scholar 

  34. de Lima-Neto P, Correia AN, Portela RR, Julião MS, Linhares-Junior GF, de Lima JES (2010) Square wave voltammetric determination of nitrofurantoin in pharmaceutical formulations on highly boron-doped diamond electrodes at different boron-doping contents. Talanta 80:1730–1736

    Article  PubMed  CAS  Google Scholar 

  35. Krejčová Z, Barek J, Vyskočil V (2015) Voltammetric determination of nitrofurantoin at a mercury meniscus modified silver solid amalgam electrode. Electroanalysis 27:185–192

    Article  CAS  Google Scholar 

  36. Kennedy DA, Lupattelli A, Koren G, Nordeng H (2016) Safety classification of herbal medicines used in pregnancy in a multinational study. BMC Complement Altern Med 16:1–9

    Article  CAS  Google Scholar 

  37. Jick SS, Jick H, Walker AM, Hunter JR (1989) Hospitalizations for pulmonary reactions following nitrofurantoin use. Chest 96:512–515

    Article  CAS  PubMed  Google Scholar 

  38. Amit G, Cohen P, Ackerman Z (2002) Nitrofurantoin-induced chronic active hepatitis. Isr Med Assoc J 4:184–186

    PubMed  Google Scholar 

  39. Tan IL et al Peripheral nerve toxic effects of nitrofurantoin. Arch Neurol 69(2):265–268

  40. Conklin JD, Hollifield RD (1966) A quantitative procedure for the determination of nitrofurantoin in whole blood and plasma. Clin Chem 12:690–696

    Article  CAS  PubMed  Google Scholar 

  41. Wilasinee D, Sutthivaiyakit P, Sutthivaiyakit S (2015) Determination of nitrofurans in chicken feed by high-performance liquid chromatography–tandem mass spectrometry. Anal Lett 48:1979–1987

    Article  CAS  Google Scholar 

  42. Watari N, Tomoo F, Nobuyoshi K (1980) Fluorescence assay of nitrofurantoin with o-aminothiophenol in plasma and urine. J Pharm Sci 69(1):106–107

    Article  CAS  PubMed  Google Scholar 

  43. Vinoth Kumar J, Karthik R, Chen SM, Chen KH, Sakthinathan S, Muthuraj V, Chiu TW (2018) Design of novel 3D flower-like neodymium molybdate: an efficient and challenging catalyst for sensing and destroying pulmonary toxicity antibiotic drug nitrofurantoin. Chem Eng J 346:11–23

    Article  CAS  Google Scholar 

  44. Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Balamurugan TST (2019) Ultrasonic energy-assisted preparation of β-cyclodextrin-carbon nanofiber composite: application for electrochemical sensing of nitrofurantoin. Ultrason Sonochem 52:391–400

    Article  CAS  PubMed  Google Scholar 

  45. Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger C, Pichler T (2004) Functionalization of carbon nanotubes. Synetic metals 141:113–122

    Article  CAS  Google Scholar 

  46. Brar LK, Singla G, Pandey OP (2015) Evolution of structural and thermal properties of carbon-coated TaC nanopowder synthesized by single step reduction of ta-ethoxide. RSC Adv 5:1406–1416

    Article  CAS  Google Scholar 

  47. Bakshi SR, Musaramthota V, Virzi DA, Keshri AK, Lahiri D, Singh V, Seal S, Agarwal A (2011) Spark plasma sintered tantalum carbide-carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater Sci Eng A 528:2538–2547

    Article  CAS  Google Scholar 

  48. Kou Z, Xi K, Pu Z, Mu S (2017) Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36:374–380

    Article  CAS  Google Scholar 

  49. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  50. Jain R, Dwivedi A, Mishra R (2009) Stripping voltammetric behaviour of toxic drug nitrofurantoin. J Hazard Mater 169:667–672

    Article  CAS  PubMed  Google Scholar 

  51. He B, Li J (2019) A sensitive electrochemical sensor based on reduced graphene oxide/Fe3O4 nanorod composites for detection of nitrofurantoin and its metabolite. Anal Methods 11:1427–1435

    Article  CAS  Google Scholar 

Download references

Funding

Financial support of this work by the Ministry of Science and Technology, Taiwan (MOST 107-2113-M-027-005-MY3 to SMC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukanya, R., Ramki, S. & Chen, SM. Ultrasound supported synthesis of tantalum carbide integrated functionalized carbon composite for the voltammetric determination of the antibacterial drug nitrofurantoin in pharmaceutical samples. Microchim Acta 187, 342 (2020). https://doi.org/10.1007/s00604-020-04314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04314-7

Keywords

Navigation