Skip to main content
Log in

Remarkable differences in the voltammetric response towards hydrogen peroxide, oxygen and Ru(NH3)63+ of electrode interfaces modified with HF or LiF-HCl etched Ti3C2Tx MXene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical study was performed on the behavior of Ti3C2Tx MXenes prepared by using either HF (MXene1) or LiF/HCl as etchants (MXene2). The use of two redox probes indicates the presence of a higher negative charge density on MXene2 in comparison to MXene1. The characterization of two nanomaterials shows that titanium and fluoride are present higher by one order of magnitude at the interface of MXene2, compared to MXene1. The high Ti and F content is accompanied by a 82-fold larger (249 μA·cm−2 vs. 5.64 μA·cm−2) anodic peak at the peak potential near 0.4 V (vs. Ag/AgCl). Similarly, the peak current on MXene2 is 317-fold higher for the oxygen reduction at pH 7.0 (at a voltage of −0.84 V) and 215-fold higher for the reduction of H2O2 at −0.89 V, when compared to MXene1.

Difference in electrochemical behavior of MXene prepared by HF (MXene1) and LiF/HCl (MXene2) as etchants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao M-Q, Torelli M, Ren CE, Ghidiu M, Ling Z, Anasori B, Barsoum MW, Gogotsi Y (2016) 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30:603–613

    Article  CAS  Google Scholar 

  2. Huang K, Li ZJ, Lin J, Han G, Huang P (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 47:5109–5124

    Article  CAS  Google Scholar 

  3. Sinha A, Dhanjai HM, Zhao YJ, Huang XB, Lu JP, Chen R (2018) Jain, MXene: an emerging material for sensing and biosensing. Trends Anal Chem 105:424–435

    Article  CAS  Google Scholar 

  4. Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A (2019) Promoting role of MXene Nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthcare Mat 8:e1801137

    Article  Google Scholar 

  5. Wang H, Wu Y, Yuan XZ, Zeng GM, Zhou J, Wang X, Chew JW (2018) Clay-inspired MXene-based electrochemical devices and photo-Electrocatalyst: state-of-the-art progresses and challenges. Adv Mater 30:e1704561

    Article  Google Scholar 

  6. Zhang X, Zhang ZH, Zhou Z (2018) MXene-based materials for electrochemical energy storage. J Energy Chem 27:73–85

    Article  Google Scholar 

  7. Luo Y, Tang L, Khan U, Yu Q, Cheng HM, Zou X, Liu B (2019) Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun 10:269

    Article  Google Scholar 

  8. Szuplewska A, Kulpińska D, Dybko A, Jastrzębska AM, Wojciechowski T, Rozmysłowska A, Chudy M, Grabowska-Jadach I, Ziemkowska W, Brzózka Z, Olszyna A (2019) 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater Sci Eng C 98:874–886

    Article  CAS  Google Scholar 

  9. Shi X, Wang H, Xie X, Xue Q, Zhang J, Kang S, Wang C, Liang J, Chen Y (2019) Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13:649–659

    Article  CAS  Google Scholar 

  10. Muckley ES, Naguib M, Ivanov IN (2018) Multi-modal, ultrasensitive, wide-range humidity sensing with Ti3C2 film. Nanoscale 10:21689–21695

    Article  CAS  Google Scholar 

  11. Li T, Chen L, Yang X, Chen X, Zhang Z, Zhao T, Li X, Zhang J (2019) A flexible pressure sensor based on an MXene–textile network structure. J Mater Chem C 7:1022–1027

    Article  CAS  Google Scholar 

  12. Liu J, Jiang X, Zhang R, Zhang Y, Wu L, Lu W, Li J, Li Y, Zhang H (2018) MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv Funct Mater 29:1807326

    Article  Google Scholar 

  13. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Man Hong S, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137

    Article  CAS  Google Scholar 

  14. Lorencova L, Gajdosova V, Hroncekova S, Bertok T, Blahutova J, Vikartovska A, Parrakova L, Gemeiner P, Kasak P, Tkac J (2019) 2D MXenes as perspective immobilization platforms for Design of Electrochemical Nanobiosensors. Electroanalysis 31:1833–1844

    Article  CAS  Google Scholar 

  15. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    Article  CAS  Google Scholar 

  16. Eklund P, Rosen J, Persson POÅ (2017) Layered ternary Mn+1AXn phases and their 2D derivative MXene: an overview from a thin-film perspective. J Phys D Appl Phys 50:113001

  17. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505

    Article  CAS  Google Scholar 

  18. D.B. Xiong, X.F. Li, Z.M. Bai, S.G. Lu (2018) Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage, Small, 14:1703419.

  19. Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Näslund L-Å, May SJ, Hultman L, Gogotsi Y, Eklund P, Barsoum MW (2014) Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 26:2374–2381

    Article  CAS  Google Scholar 

  20. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516:78

    Article  CAS  Google Scholar 

  21. Xiong D, Li X, Bai Z, Lu S (2018) Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14:e1703419

  22. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644

    Article  CAS  Google Scholar 

  23. Hope MA, Forse AC, Griffith KJ, Lukatskaya MR, Ghidiu M, Gogotsi Y, Grey CP (2016) NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys 18:5099–5102

    Article  CAS  Google Scholar 

  24. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A (2016) Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials 2:1600255

    Article  Google Scholar 

  25. Nayak P, Jiang Q, Mohanraman R, Anjum D, Hedhili MN, Alshareef HN (2018) Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti 3 C 2 T x MXene. Nanoscale 10:17030–17037

    Article  CAS  Google Scholar 

  26. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials 2:16098

    Article  CAS  Google Scholar 

  27. Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud KA, Tkac J (2017) Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim Acta 235:471–479

  28. Chia X, Pumera M (2018) Characteristics and performance of two-dimensional materials for electrocatalysis. Nat Catalysis 1:909–921

    Article  CAS  Google Scholar 

  29. Yang H, Wang Z, Zhou Q, Xu C, Hou J (2019) Nanoporous platinum-copper flowers for non-enzymatic sensitive detection of hydrogen peroxide and glucose at near-neutral pH values. Mikrochim Acta 186:631

  30. Ma J, Bai W, Zheng J (2019) Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets. Microchim Acta 186:482

    Article  Google Scholar 

  31. Sivakumar M, Veeramani V, Chen S-M, Madhu R, Liu S-B (2019) Porous carbon-NiO nanocomposites for amperometric detection of hydrazine and hydrogen peroxide. Microchim Acta 186:59

    Article  Google Scholar 

  32. Škantárová L, Oriňák A, Oriňáková R, Jerigová M, Stupavská M, Velič D (2013) Functional silver nanostructured surfaces applied in SERS and SIMS. Surf Interface Anal 45:1266–1272

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support received from the Slovak Research and Development Agency APVV 17-0300. We would like to acknowledge the support received from the Ministry of Health of the Slovak Republic under the project registration number 2018/23-SAV-1. This work is part of project which received funding from agency VEGA 02/0010/18 (Slovakia). This work was also made possible by NPRP grant # 9-219-2-105 from the Qatar National Research Fund (A Member of The Qatar Foundation). The finding achieved herein is solely the responsibility of the authors. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 777810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tkac.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 15 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajdosova, V., Lorencova, L., Prochazka, M. et al. Remarkable differences in the voltammetric response towards hydrogen peroxide, oxygen and Ru(NH3)63+ of electrode interfaces modified with HF or LiF-HCl etched Ti3C2Tx MXene. Microchim Acta 187, 52 (2020). https://doi.org/10.1007/s00604-019-4049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4049-6

Keywords

Navigation