Skip to main content
Log in

Surface-imprinted β-cyclodextrin-functionalized carbon nitride nanosheets for fluorometric determination of sterigmatocystin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Correction to this article was published on 08 September 2021

This article has been updated

Abstract

β-Cyclodextrin-functionalized carbon nitride nanosheets were modified with a molecularly imprinted polymer to obtain a fluorescent probe of type MIP@β-CD/CNNS which is shown to enable fluorometric determination of sterigmatocystin (STG). The material was characterized by transmission electron microscopy, infrared spectra, powder X-ray diffraction, X-ray photoelectron spectroscopy, and by absorption and emission spectra. The modified CNNSs have a good fluorescence quantum yield (13%), high sorption capacity for STG (86 mg·g−1), fast adsorption rate (25 min), and superior adsorption selectivity (with an imprint factor 2.56). When used as an optical probe for STG, the CNNSs act as the chromophore, while β-CD and MIP act as the recognition groups. The blue fluorescence of MIP@β-CD/CNNS (with excitation/emission maxima at 368/432 nm) is quenched by STG. Fluorescence drops linearly in the 0.15 to 3.1 μM STG concentration range. The lower detection limit is 74 nM. The method was successfully applied to the determination of STG in spiked wheat extract. Conceivably, this detection scheme based on a combination of β-CD inclusion and molecular imprinting may be extended to the detection of various other organic compounds.

Schematic representation of the preparation of surface-imprinted β-cyclodextrin-functionalized carbon nitride nanosheets. These are used, along with a molecularly imprinted polymer, for fluorometric determination of sterigmatocystin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Zhou X, Yang L, Tan XP, Zhao GF, Xie XG, Du GB (2018) A robust electrochemical immunosensor based on hydroxyl pillar 5 arene@AuNPs@g-C3N4 hybrid nanomaterial for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 112:31–39. https://doi.org/10.1016/j.bios.2018.04.036

    Article  CAS  PubMed  Google Scholar 

  2. Jing Han HYZ, Gao MX, Huang CZ (2016) A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin. Talanta 148:279–284. https://doi.org/10.1016/j.talanta.2015.10.038

    Article  CAS  PubMed  Google Scholar 

  3. Rahbar N, Salehnezhad Z, Hatamie A, Babapour A (2018) Graphitic carbon nitride nanosheets as a fluorescent probe for chromium speciation. Mikrochim Acta 185:101. https://doi.org/10.1007/s00604-017-2615-3

    Article  CAS  PubMed  Google Scholar 

  4. Wang Q, Wang W, Lei J, Xu N, Gao F, Ju H (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188. https://doi.org/10.1021/ac403646n

    Article  CAS  PubMed  Google Scholar 

  5. Xiang M-H, Liu J-W, Li N, Tang H, Yu R-Q, Jiang J-H (2016) A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase. Nanoscale 8:4727–4732. https://doi.org/10.1039/c5nr08278a

    Article  CAS  PubMed  Google Scholar 

  6. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046. https://doi.org/10.1016/s0032-9592(03)00258-9

    Article  Google Scholar 

  7. Lai WF, Rogach AL, Wong WT (2017) Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 46:6379–6419. https://doi.org/10.1039/c7cs00040e

    Article  CAS  PubMed  Google Scholar 

  8. Cheng Y, Jiang P, Lin S, Li Y, Dong X (2014) An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sensors Actuators B Chem 193:838–843. https://doi.org/10.1016/j.snb.2013.12.039

    Article  CAS  Google Scholar 

  9. Lenik J (2017) Cyclodextrins based electrochemical sensors for biomedical and pharmaceutical analysis. Curr Med Chem 24:2359–2391. https://doi.org/10.2174/0929867323666161213101407

    Article  CAS  PubMed  Google Scholar 

  10. Gao JW, Xiong HW, Zhang W, Wang Y, Wang HX, Wen W, Zhang XH, Wang SF (2018) Electrochemiluminescent aptasensor based on beta-cyclodextrin/graphitic carbon nitride composite for highly selective and ultrasensitive assay of platelet derived growth factor BB. Carbon 130:416–423. https://doi.org/10.1016/j.carbon.2018.01.026

    Article  CAS  Google Scholar 

  11. Zou YD, Wang XX, Ai YJ, Liu YH, Ji YF, Wang HQ, Hayat T, Alsaedi A, Hu WP, Wang XK (2016) Beta-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J Mater Chem A 4:14170–14179. https://doi.org/10.1039/c6ta05958a

    Article  CAS  Google Scholar 

  12. Li R, Feng Y, Pan G, Liu L (2019) Advances in molecularly imprinting Technology for Bioanalytical Applications. Sensors (Basel) 19:177–210. https://doi.org/10.3390/s19010177

    Article  CAS  Google Scholar 

  13. Figueiredo L, Erny GL, Santos L, Alves A (2016) Applications of molecularly imprinted polymers to the analysis and removal of personal care products: a review. Talanta 146:754–765. https://doi.org/10.1016/j.talanta.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  14. Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L (2018) Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron 112:54–71. https://doi.org/10.1016/j.bios.2018.04.028

    Article  CAS  PubMed  Google Scholar 

  15. Phan NVH, Sussitz HF, Ladenhauf E, Pum D, Lieberzeit PA (2018) Combined layer/particle approaches in surface molecular imprinting of proteins: signal enhancement and competition. Sensors (Basel) 18:180–190. https://doi.org/10.3390/s18010180

    Article  CAS  Google Scholar 

  16. Asman S, Mohamad S, Sarih N (2015) Exploiting β-Cyclodextrin in molecular imprinting for achieving recognition of Benzylparaben in aqueous media. Int J Mol Sci 16:3656–3676. https://doi.org/10.3390/ijms16023656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng Y, Jiang P, Dong X (2015) Molecularly imprinted fluorescent chemosensor synthesized using quinoline-modified-β-cyclodextrin as monomer for spermidine recognition. RSC Adv 5:55066–55074. https://doi.org/10.1039/c5ra07761c

    Article  CAS  Google Scholar 

  18. Cheng Y, Nie J, Li Z, Yan Z, Xu G, Li H, Guan D (2017) A molecularly imprinted polymer synthesized using beta-cyclodextrin as the monomer for the efficient recognition of forchlorfenuron in fruits. Anal Bioanal Chem 409:5065–5072. https://doi.org/10.1007/s00216-017-0452-1

    Article  CAS  PubMed  Google Scholar 

  19. Xu S, Chen L, Ma L (2018) Fluorometric determination of quercetin by using graphitic carbon nitride nanoparticles modified with a molecularly imprinted polymer. Mikrochim Acta 185:492. https://doi.org/10.1007/s00604-018-3016-y

    Article  CAS  PubMed  Google Scholar 

  20. Lee HJ, Ryu D (2017) Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J Agric Food Chem 65:7034–7051. https://doi.org/10.1021/acs.jafc.6b04847

    Article  CAS  PubMed  Google Scholar 

  21. Takagi M, Uno S, Kokushi E, Sato F, Wijayagunawardane M, Fink-Gremmels J (2018) Measurement of urinary concentrations of the mycotoxins zearalenone and sterigmatocystin as biomarkers of exposure in mares. Reprod Domest Anim 53:68–73. https://doi.org/10.1111/rda.13054

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Y, Wang Q, Huang J, Ma L, Chen Z, Wang F (2018) Aflatoxin B1 and sterigmatocystin in wheat and wheat products from supermarkets in China. Food Addit Contam Part B Surveill 11:9–14. https://doi.org/10.1080/19393210.2017.1388295

    Article  CAS  PubMed  Google Scholar 

  23. Diaz Nieto CH, Granero AM, Zon MA, Fernandez H (2018) Sterigmatocystin: a mycotoxin to be seriously considered. Food Chem Toxicol 118:460–470. https://doi.org/10.1016/j.fct.2018.05.057

    Article  CAS  PubMed  Google Scholar 

  24. Amadasi A, Dall'asta C, Ingletto G, Pela R, Marchelli R, Cozzini P (2007) Explaining cyclodextrin-mycotoxin interactions using a 'natural' force field. Bioorg Med Chem 15:4585–4594. https://doi.org/10.1016/j.bmc.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21. https://doi.org/10.1021/ja308249k

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Wei Z, Luo X, Wan Q, Qiu R, Wang S (2019) An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta 195:33–39. https://doi.org/10.1016/j.talanta.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  27. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  28. Liang Z, Kang M, Payne GF, Wang X, Sun R (2016) Probing energy and Electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Appl Mater Interfaces 8:17478–17488. https://doi.org/10.1021/acsami.6b04826

    Article  CAS  PubMed  Google Scholar 

  29. Oplatowska-Stachowiak M, Reiring C, Sajic N, Haasnoot W, Brabet C, Campbell K, Elliott CT, Salden M (2018) Development and in-house validation of a rapid and simple to use ELISA for the detection and measurement of the mycotoxin sterigmatocystin. Anal Bioanal Chem 410:3017–3023. https://doi.org/10.1007/s00216-018-0988-8

    Article  CAS  PubMed  Google Scholar 

  30. Biancardi A, Dall'Asta C (2015) Determination of sterigmatocystin in feed by LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:2093–2100. https://doi.org/10.1080/19440049.2015.1094709

    Article  CAS  PubMed  Google Scholar 

  31. Liu J-M, Wei S-Y, Liu H-L, Fang G-Z, Wang S (2017) Preparation and evaluation of Core–Shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Sterigmatocystin in food. Polymers 9:546. https://doi.org/10.3390/polym9100546

    Article  CAS  PubMed Central  Google Scholar 

  32. Hossain MZ, Goto T (2015) Determination of sterigmatocystin in grain using gas chromatography-mass spectrometry with an on-column injector. Mycotoxin Res 31:17–22. https://doi.org/10.1007/s12550-014-0214-2

    Article  CAS  PubMed  Google Scholar 

  33. Xu L, Fang G, Pan M, Wang X, Wang S (2016) One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains. Biosens Bioelectron 77:950–956. https://doi.org/10.1016/j.bios.2015.10.072

    Article  CAS  PubMed  Google Scholar 

  34. Liu J-M, Cao F-Z, Fang G-Z, Wang S (2017) Upconversion nanophosphor-involved molecularly imprinted fluorescent polymers for sensitive and specific recognition of Sterigmatocystin. Polymers 9:299. https://doi.org/10.3390/polym9070299

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Independent innovation fund project of agricultural science and technology of Jiangsu Province in 2017 [No CX (17) 1003].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Shi or Hua He.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Li, G., Cui, Y. et al. Surface-imprinted β-cyclodextrin-functionalized carbon nitride nanosheets for fluorometric determination of sterigmatocystin. Microchim Acta 186, 808 (2019). https://doi.org/10.1007/s00604-019-3867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3867-x

Keywords

Navigation