Skip to main content
Log in

Fluorometric visualization of mucin 1 glycans on cell surfaces based on rolling-mediated cascade amplification and CdTe quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A rolling-mediated cascade (RMC) amplification strategy is described for improved visualization of profiling glycans of mucin 1 (MUC 1) on cell surfaces. CdTe quantum dots (QDs) are used as fluorescent labels. The RMC based amplification allows even distinct glycoforms of MUC1 to be visualized on the surface of MCF-7 cell via an amplified Förster resonance energy transfer (FRET) imaging strategy that works at excitation/emission wavelengths of 345/610 nm. This is achieved by utilizing antibody against MUC1 modified with the fluorescent label 7-amino-4-methylcoumarin-3-acetic acid (AMCA) as the energy donor in FRET. The QDs (used to label surface glycans) act as acceptors. N-Azidoacetylgalactosamine-Acetylated (Ac4GalNAz) as a non-natural azido sugar, can be incorporated into the glycans of the cell surface, which can promote further labeling. The method has the advantage of only requiring a small amount of non-natural sugar to be introduced in metabolic glycan labeling since too much of an artificial sugar will interfere with the physiological functions of cells.

Schematic for the DNA rolling-mediated cascade (RMC)-assisted metabolic labeling of cell surface glycans by using CdTe quantum dots as labels and an intramolecular amplified FRET strategy for imaging glycans on a specific glycosylated protein, MUC1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stowell SR, Ju T, Cummings RD (2015) Protein glycosylation in cancer. Annu Rev Pathol 10(1):473–510. https://doi.org/10.1146/annurev-pathol-012414-040438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang H, English BP, Hazan RB, Wu P, Ovryn B (2015) Tracking surface glycans on live cancer cells with single-molecule sensitivity. Angew Chem Int Ed 127(6):1785–1789. https://doi.org/10.1002/anie.201407976

    Article  CAS  Google Scholar 

  3. Paszek MJ, Dufort CC, Rossier O, Bainer R, Mouw JK, Godula K, Hudak JE, Lakins JN, Wijekoon AC, Cassereau L, Rubashkin MG, Magbanua MJ, Thorn KS, Davidson MW, Rugo HS, Park JW, Hammer DA, Giannone G, Bertozzi CR, Weaver VM (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511(7509):319–325. https://doi.org/10.1038/nature13535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolfert MA, Boons GJ (2013) Adaptive immune activation: Glycosylation does matter. Nat Chem Biol 9(12):776–784. https://doi.org/10.1038/nchembio.1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hudak JE, Canham SM, Bertozzi CR (2014) Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10(1):69–75. https://doi.org/10.1038/nchembio.1388

    Article  CAS  PubMed  Google Scholar 

  6. Katorcha E, Makarava N, Savtchenko R, Baskakov IV (2014) Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLoS Pathog 10:e1004366. https://doi.org/10.1371/journal.ppat.1004366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaeken J (2013) Congenital disorders of glycosylation. Handb Clin Neurol 113:1737–1743. https://doi.org/10.1038/ejhg.2013.168

    Article  CAS  PubMed  Google Scholar 

  8. Doll F, Buntz A, Spate AK, Schart VF, Timper A, Schrimpf W, Hauck CR, Zumbusch A, Wittmann V (2016) Visualization of protein-specific glycosylation inside living cells. Angew Chem Int Ed 55(6):2262–2266. https://doi.org/10.1002/anie.201503183

    Article  CAS  Google Scholar 

  9. Wu N, Bao L, Ding L, Ju H (2016) A single excitation-duplexed imaging strategy for profiling cell surface protein-specific glycoforms. Angew Chem Int Ed 55(17):5220–5224. https://doi.org/10.1002/ange.201601233

    Article  CAS  Google Scholar 

  10. Lin W, Du Y, Zhu Y, Chen X (2014) A cis-membrane FRET-based method for protein-specific imaging of cell-surface glycans. J Am Chem Soc 136(2):679–687. https://doi.org/10.1021/ja410086d

    Article  CAS  PubMed  Google Scholar 

  11. Thaysenandersen M, Packer NH (2014) Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. BBA-Proteins and Proteomics 1844(9):1437–1452. https://doi.org/10.1016/j.bbapap.2014.05.002

    Article  CAS  Google Scholar 

  12. Darula Z, Sherman J, Medzihradszky KF (2012) How to dig deeper? Improved enrichment methods for mucin core-1 type glycopeptides. Mol Cell Proteomics 11(7):O111.016774. https://doi.org/10.1074/mcp.O111.016774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Zhao Y, Ying WT, Qian XH (2018) Progress of O-glycoprotein and O-glycoproteome analysis in secretion systems. Sci Sinica 48(2):124–133. https://doi.org/10.1360/N052017-00170

    Article  Google Scholar 

  14. Kayser H, Zeitler R, Kannicht C, Grunow D, Nuck R, Reutter W (1992) Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J Biol Chem 267:16934–16938

    CAS  PubMed  Google Scholar 

  15. Robinson PV, de Almeida-Escobedo G, de Groot AE, McKechnie JL, Bertozzi CR (2015) Live-cell labeling of specific protein glycoforms by proximity-enhanced bioorthogonal ligation. J Am Chem Soc 10452-10455. https://doi.org/10.1021/jacs.5b04279

  16. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287(5460):2007–2010. https://doi.org/10.1126/science.287.5460.2007

    Article  CAS  PubMed  Google Scholar 

  17. Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC (2008) Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 130(35):11576–11577. https://doi.org/10.1021/ja8030467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haga Y, Ishii K, Hibino K, Sako Y, Ito Y, Taniguchi N, Suzuki T (2012) Visualizing specific protein glycoforms by transmembrane fluorescence resonance energy transfer. Nat Commun 3(2):907. https://doi.org/10.1038/ncomms1906

    Article  CAS  PubMed  Google Scholar 

  19. Belardi B, de la Zerda A, Spiciarich DR, Maund SL, Peehl DM, Bertozzi CR (2013) Imaging the glycosylation state of cell surface glycoproteins by two-photon fluorescence lifetime imaging. Angew Chem Int Ed 52(52):14045–14049. https://doi.org/10.1002/anie.201307512

    Article  CAS  Google Scholar 

  20. Zhang XR, Li R, Chen YY, Zhang SS, Wang WS, Li FC (2016) Applying DNA rolling circle amplification in fluorescence imaging of cell surface glycans labeled by a metabolic method. Chem Sci 7:6182–6189. https://doi.org/10.1039/C6SC02089E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hui JJ, Bao L, Li SQ, Zhang Y, Feng YM, Ding L, Ju HX (2017) Localized chemical remodeling for live cell imaging of protein-specific glycoform. Angew Chem Int Ed 56:28. https://doi.org/10.1002/ange.201703406

    Article  Google Scholar 

  22. Zhao TB, Li TL, Liu Y (2017) Silver nanoparticle plasmonic enhanced förster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface. Nanoscale 9:9841–9847. https://doi.org/10.1039/C7NR01562C

    Article  CAS  PubMed  Google Scholar 

  23. Jalink K (2013) hiFRET: some tailwind for FRET resolves weak protein interactions. Nat Methods 10(10):947–948. https://doi.org/10.1038/nmeth.2652

    Article  CAS  PubMed  Google Scholar 

  24. Grünberg R, Burnier JV, Ferrar T, Beltran-Sastre V, Stricher F, Sloot AMVD, Garcia-Olivas R, Mallabiabarrena A, Sanjuan X, Zimmermann T, Serrano L (2013) Engineering of weak helper interactions for high-efficiency FRET probes. Nature Method 10(10):1021–1027. https://doi.org/10.1038/NMETH.2625

    Article  Google Scholar 

  25. Chang PV, Chen X, Smyrniotis C, Xenakis A, Hu T, Bertozzi CR, Wu P (2009) Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew Chem Int Ed 121(22):4090–4093. https://doi.org/10.1002/ange.200806319

    Article  Google Scholar 

  26. Laughlin ST, Bertozzi CR (2007) Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2(11):2930–2944. https://doi.org/10.1038/nprot.2007.422

    Article  CAS  PubMed  Google Scholar 

  27. Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20(6):332–342. https://doi.org/10.1016/j.molmed.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang S, Wen L, Yang J, Zeng J, Sun Q (2016) Facile fabrication of dendritic Mesoporous SiO2@CdTe@SiO2 fluorescent nanoparticles for bioimaging. Part Part Syst Charact 33(5):261–270. https://doi.org/10.1002/ppsc.201500254

    Article  CAS  Google Scholar 

  29. Zhu D, Miao ZY, Hu Y, Zhang XJ (2018) Single-step, homogeneous and sensitive detection for microRNAs with dual recognition steps based on luminescence resonance energy transfer (LRET) using upconversion nanoparticles. Biosens Bioelectron 100:475–481. https://doi.org/10.1016/j.bios.2017.09.039

    Article  CAS  PubMed  Google Scholar 

  30. Michalet X, Pinaud FF, Bentolila A, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. https://doi.org/10.1126/science.1104274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rong J, Han J, Dong L, Tan Y, Yang H, Feng L, Wang Q, Meng R, Zhao J, Wang S, Chen X (2014) Glycan imaging in intact rat hearts and glycoproteomic analysis reveal the upregulation of sialylation during cardiac hypertrophy. J Am Chem Soc 136(50):17468–17476. https://doi.org/10.1021/ja508484c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely appreciate the National Natural Science Foundation of China for the financial support (81573388). This work was supported by “Qing Lan Project of Jiangsu province” and “Six talent peaks project of Jiangsu Province (YY-032)”. This work was also supported by the Open Project Program of Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica (No. JKLPSE201805) and the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Tang, Y., Zhang, X. et al. Fluorometric visualization of mucin 1 glycans on cell surfaces based on rolling-mediated cascade amplification and CdTe quantum dots. Microchim Acta 186, 721 (2019). https://doi.org/10.1007/s00604-019-3840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3840-8

Keywords

Navigation