Skip to main content
Log in

Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A flexible adhesive tape decorated with SERS-active silver nanorods (AgNRs) in the form of an array nanostructure is described. The tape was constructed by transferring the AgNRs nanostructures from silicon to the transparent tape by a “paste & peel off” procedure. The transparent, sticky, and flexible properties of commercial tapes allow almost any SERS-inactive irregular surface to be detected in-situ by pasting the SERS tape onto the position to be analyzed. Three examples for an analytical application are presented, viz. determination of (a) tetramethylthiuram disulfide and thiabendazole (two pesticides), (b) colorants in the gel of a writing pen, and (c) the fluorophore Rhodamine B. The tetramethylthiuram disulfide on apple surface was rapidly detected with a LOD of 28.8 ng·cm−2. The AgNRs effectively quenched the fluorescence of the matrix and fluorophores, this enabling the colorants and Rhodamine B to be identified. The results demonstrated that the SERS tape can be used for versatile in-situ detection. Conceivably, it may find applications in food analysis, non-invasive identification, environmental monitoring, and in other areas of daily life.

A flexible and adhesive SERS active tape decorated with silver nanorods (AgNRs) arrays was constructed through a “paste & peel off” method. It can be used as a versatile in situ analysis platform for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wilson AJ, Willets KA (2016) Unforeseen distance-dependent SERS spectroelectrochemistry from surface-tethered Nile blue: the role of molecular orientation. Analyst 141(17):5144–5151

    Article  CAS  Google Scholar 

  2. Xie W, Walkenfort B, Schlücker S (2013) Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J Am Chem Soc 135(5):1657–1660

    Article  CAS  Google Scholar 

  3. Li D-W, Zhai W-L, Li Y-T, Long Y-T (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181(1–2):23–43

    Article  CAS  Google Scholar 

  4. Pan Y, Guo X, Zhu J, Wang X, Zhang H, Kang Y, Wu T, Du Y (2015) A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Microchim Acta 182(9–10):1775–1782

    Article  CAS  Google Scholar 

  5. Li D, Duan H, Wang Y, Zhang Q, Cao H, Deng W, Li D (2018) On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Microchim Acta 185(1):10

    Article  Google Scholar 

  6. Qu L-L, Geng Y-Y, Bao Z-N, Riaz S, Li H (2016) Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim Acta 183(4):1307–1313

    Article  CAS  Google Scholar 

  7. Braz A, López-López M, Montalvo G, Ruiz CG (2015) Forensic discrimination of inkjet-printed lines by Raman spectroscopy and surface-enhanced Raman spectroscopy. Aust J Forensic Sci 47(4):411–420

    Article  Google Scholar 

  8. Schlucker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl 53(19):4756–4795

    Article  Google Scholar 

  9. Panneerselvam R, Liu G-K, Wang Y-H, Liu J-Y, Ding S-Y, Li J-F, Wu D-Y, Tian Z-Q (2018) Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem Commun 54(1):10–25

    Article  CAS  Google Scholar 

  10. Liu Z, Cheng L, Zhang L, Jing C, Shi X, Yang Z, Long Y, Fang J (2014) Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au–Ag alloy nanourchins. Nanoscale 6(5):2567–2572

    Article  CAS  Google Scholar 

  11. Ding S-Y, You E-M, Yi J, Li J-F, Tian Z-Q (2017) Further expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticle. Faraday Discuss 205:457–468

    Article  CAS  Google Scholar 

  12. Jiang N, Kurouski D, Pozzi EA, Chiang N, Hersam MC, Duyne RPV (2016) Tip-enhanced Raman spectroscopy: from concepts to practical applications. Chem Phys Lett 659:16–24

    Article  CAS  Google Scholar 

  13. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395

    Article  CAS  Google Scholar 

  14. Kumar S, Goel P, Singh JP (2017) Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sensors Actuators B Chem 241(31):577–583

    Article  CAS  Google Scholar 

  15. Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L (2016) Flexible and adhesive surface enhanced Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88(4):2149–2155

    Article  CAS  Google Scholar 

  16. Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2(12):3429–3435

    Article  CAS  Google Scholar 

  17. Fortuni B, Fujita Y, Ricci M, Inose T, Aubert R, Lu G, Hutchison JA, Hofkens J, Latterini L, Ujii H (2017) A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. Chem Commun 53(37):5121–5124

    Article  CAS  Google Scholar 

  18. Jiang J, Zou S, Ma L, Wang S, Liao J, Zhang Z (2018) Surface-enhanced Raman scattering detection of pesticide residues using transparent adhesive Tapes and coated silver Nanorods. ACS Appl Mater Interfaces 10(10):9129–9135

    Article  CAS  Google Scholar 

  19. Ma L, Huang Y, Hou M, Zheng X, Zhang Z (2015) Silver Nanorods wrapped with ultrathin Al2O3 layers exhibiting excellent SERS sensitivity and outstanding SERS stability. Sci Rep 5:12890

    Article  CAS  Google Scholar 

  20. Jiang J, Ma L, Chen J, Zhang P, Wu H, Zhang Z, Wang S, Yun W, Li Y, Jia J (2017) SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Microchim Acta 184(8):2775–2782

    Article  CAS  Google Scholar 

  21. Jiang J, Wang S, Wu H, Zhang J, Li H, Jia J, Wang X, Liao J (2015) Facile and rapid fabrication of large-scale silver nanoparticles arrays with high SERS performance. RSC Adv 5:105820–105824

    Article  CAS  Google Scholar 

  22. Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2(2):15221

    Article  Google Scholar 

  23. Lee D, Lee S, Seong GH, Choo J, Lee EK, Gweon DG, Lee S (2006) Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Appl Spectrosc 60(4):373–377

    Article  Google Scholar 

  24. Wang J, Kong L, Guo Z, Xu J, Liu J (2010) Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. J Mater Chem 20(25):5271–5279

    Article  CAS  Google Scholar 

  25. Yang JK, Kang H, Lee H, Jo A, Jeong S, Jeon SJ, Kim HI, Lee HY, Jeong DH, Kim JH (2014) Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides. ACS Appl Mater Interfaces 6(15):12541–12549

    Article  CAS  Google Scholar 

  26. Hoppmann EP, Wei WY, White IM (2013) Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63(3):219–224

    Article  CAS  Google Scholar 

  27. Alyami A, Quinn AJ, Iacopino D (2019) Flexible and transparent surface enhanced Raman scattering (SERS)-active ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 201:58–64

    Article  CAS  Google Scholar 

  28. Zhang Y, Wang Z, Wu L, Pei Y, Chen P, Cui Y (2014) Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst 139(20):5148–5154

    Article  CAS  Google Scholar 

  29. Müller C, David L, Chiş V, Pînzaru SC (2014) Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering. Food Chem 145(7):814–820

    Article  Google Scholar 

  30. Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC (2014) Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and Iron gall ink on paper. J Am Chem Soc 136(24):8677–8684

    Article  CAS  Google Scholar 

  31. Bell SEJ, Stewart SP, Ho YC, Craythorne BW, Speers SJ (2013) Comparison of the discriminating power of Raman and surface-enhanced Raman spectroscopy with established techniques for the examination of liquid and gel inks. J Raman Spectrosc 44(4):509–517

    Article  CAS  Google Scholar 

  32. Casadio F, Leona M, Lombardi JR, Van Duyne R (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res 43(6):782–791

    Article  CAS  Google Scholar 

  33. Zrimsek AB, Henry A-I, Van Duyne RP (2013) Single molecule surface-enhanced Raman spectroscopy without Nanogaps. J Phys Chem Lett 4(19):3206–3210

    Article  CAS  Google Scholar 

  34. Wei W, Huang Q (2017) Rapid fabrication of silver nanoparticle-coated filter paper as SERS substrate for low-abundance molecules detection. Spectrochim Acta, Part A 179:211–215

    Article  CAS  Google Scholar 

  35. Wang D, Wang F, Yang H (2018) Robust, flexible, sticky and high sensitive SERS membrane for rapid detection applications. Sensors Actuators B Chem 274:676–681

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the China Academy of Engineering Physics for the sponsored research (TCSQ2016203), the Basic Science Center Project of NSFC (no. 51788104), the Radiochemical Discipline 909 Funds by the China Academy of Engineering Physics (no. XK909-2), the Natural Science Foundation of China (no. 21501157, 51531006, and 51572148), and the key project of the Ministry of Science and Technology of China (grant no. 2016YFE0104000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junsheng Liao or Zhengjun Zhang.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zou, S., Li, Y. et al. Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Microchim Acta 186, 603 (2019). https://doi.org/10.1007/s00604-019-3695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3695-z

Keywords

Navigation