Skip to main content
Log in

Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification, glucose oxidase, and readout of pH changes

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This work reports on a method for determination of lead(II) ion in environmental water samples. A Pb2+-specific DNAzyme immobilized on magnetic beads was coupled to rolling circle amplification (RCA) and pH meter-based readout. On addition of Pb2+ ion, it induces partial cleavage of the DNAzyme on the magnetic beads. The single-stranded DNA remaining on the magnetic beads is used as the primer to trigger the RCA reaction with the assistance of a circular DNA template, polymerase and dNTPs. This results in the formation of numerous oligonucleotide repeats on the magnetic bead. Subsequently, these repeats hybridize with glucose oxidase-labeled single-stranded DNA (GOx-ssDNA) to form a long concatamer containing tens to hundreds of GOx-ssDNA tandem repeats. The concatenated GOx molecules oxidize glucose, and this is accompanied by a drop in the local pH value. The pH values (vs. background signal) drop linearly when Pb2+ concentrations increase from 1.0–100 nM, and the detection limit is 0.91 nM. The method displays good reproducibility, high specificity and acceptable accuracy. It was applied to the analysis of spiked water samples, and results compared favorably with those obtained by ICP-MS.

Schematic presentation of metal-ion-induced DNAzyme on magnetic bead (MB) with rolling circle amplification (RCA) for pH meter-based detection of lead(II) ion and by using a glucose oxidase (GOx)-labeled probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

References

  1. Lin Y, Zhou Q, Zeng Y, Tang D (2018) Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B1. Microchim Acta 185:311

    Article  Google Scholar 

  2. Gao Z, Xu M, Hou L, Chen G, Tang D (2013) Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal Chem 85:6945–6952

    Article  CAS  Google Scholar 

  3. Mars A, Ben S, Gaied A, Raouafi N (2018) Electrochemical immunoassay for lactalbumin based on the use of ferrocene-modified gold nanoparticles and lysozyme-modified magnetic beads. Microchim Acta 185:449

    Article  Google Scholar 

  4. Xu Y, Lu C, Sun Y, Shao Y, Cai Y, Zhang Y, Miao J, Miao P (2018) A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles. Microchim Acta 185:548

    Article  Google Scholar 

  5. Yi J, Qin Q, Wang Y, Zhang R, Bi H, Yu S, Liu B, Qiao L (2018) Identification of pathogenic bacteria in human blood using IgG-modified Fe3O4 magnetic beads as a sorbent and MALDI-TOF MS for profiling. Microchim Acta 185:542

    Article  Google Scholar 

  6. Wu Y, Wang M, Ouyang H, He Y, Zhao X, Fu Z (2018) Teicoplanin-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of the luminol chemiluminescence by intracellular catalase. Microchim Acta 185:391

    Article  Google Scholar 

  7. Modh H, Scheper T, Walter J (2018) Aptamer-modified magnetic beads in biosensing. Sensors 18:1041

    Article  Google Scholar 

  8. Robertson A, Dahl J, Ougland R, Klungland A (2012) Pull-down of 5-hydroxymethylcytosine DNA using JBP1-coated magnetic beads. Nat Protoc 7:340–350

    Article  CAS  Google Scholar 

  9. McMahon J, Braca P (1992) An inexpensive parallel interface to a digital pH meter. J Chem Educ 69:a156–a158

    Article  Google Scholar 

  10. Kwon D, Joo J, Lee S, Jeon S (2013) Facile and sensitive method for detecting cardiac markers using ubiquitous pH meters. Anal Chem 85:12134–12137

    Article  CAS  Google Scholar 

  11. Jiang Y, Su Z, Zhang J, Cai M, Wu L (2018) A novel electrochemical immunoassay for carcinoembryonic antigen based on glucose oxidase-encapsulated nanogold hollow spheres with a pH meter readout. Analyst 143:5271–5277

    Article  CAS  Google Scholar 

  12. Wang L, Chen C, Huang H, Huang D, Luo F, Qiu B, Guo L, Lin Z, Yang H (2018) Sensitive detection of telomerase activity in cancer cells using portable pH meters as readout. Biosens Bioelectron 121:153–158

    Article  CAS  Google Scholar 

  13. Liang J, Wang J, Zhang L, Wang S, Yao C, Zhang Z (2019) Glucose oxidase-loaded liposomes for in situ amplified signal of electrochemical immunoassay on a handheld pH meter. New J Chem 43:1372–1379

    Article  CAS  Google Scholar 

  14. Wang J, Song M, Hu C, Wu K (2018) Portable, self-powered, and light-addressable photoelectrochemical sensing platforms using pH meter readouts for high-throughput screening of thrombin inhibitor drugs. Anal Chem 90:9366–9373

    Article  CAS  Google Scholar 

  15. Jakhar S, Pundir C (2018) Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric pH urea biosensor. Biosens Bioelectron 100:242–250

    Article  CAS  Google Scholar 

  16. Zhang C, Tang J, Huang L, Li Y, Tang D (2017) In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Microchim Acta 184:2445–2453

    Article  CAS  Google Scholar 

  17. Abolhasan R, Mehdizadeh A, Rashidi M, Aghebati-Maleki L, Yousenfi M (2019) Application of hairpin DNA-based biosensor with various signal amplification strategies in clinical diagnosis. Biosens Bioelectron 129:164–174

    Article  CAS  Google Scholar 

  18. Rayner P, Duckett S (2018) Signal amplification by reversible exchange (SABRE): from discovery to diagnosis. Angew Chem Int Ed 57:6742–6753

    Article  CAS  Google Scholar 

  19. Ali M, Li F, Zhang Z, Zhang K, Kang D, Ankrum J, Le X, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43:3324–2241

    Article  CAS  Google Scholar 

  20. Warford A, Akar H, Riberio D (2014) Antigen retrieval, blocking, detection and visualization systems in immunohistochemistry: a review and practical evaluation of tyramide and rolling circle amplification systems. Methods 70:28–33

    Article  CAS  Google Scholar 

  21. Mohsen M, Kool E (2016) The discovery of rolling circle amplification and rolling circle transcription. Acc Chem Res 49:2540–2550

    Article  CAS  Google Scholar 

  22. Zhang K, Lv S, Lin Z, Li M, Tang D (2018) Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens Bioelectron 101:159–166

    Article  CAS  Google Scholar 

  23. Zhang B, Liu B, Zhou J, Tang J, Tang D (2013) Additional molecular biological amplification strategy for enhanced sensitivity of monitoring low-abundance protein with dual nanotags. ACS Appl Mater Interfaces 5:4479–4485

    Article  CAS  Google Scholar 

  24. Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703

    Article  CAS  Google Scholar 

  25. Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronics signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399

    Article  CAS  Google Scholar 

  26. Aamna A, Talpur F, Kumar A, Tariq M, Muhammad A (2019) Synthesis of ultrasonic-assisted lead ion imprinted polymer as a selective sorbent for the removal of Pb2+ in a real water sample. Microchem J 146:1160–1168

    Article  Google Scholar 

  27. Wang Y, Liu Z, Luo F, Peng H, Zhang S, Xie R, Ju X, Wang W, Faraj Y, Chu L (2019) A novel smart membrane with ion-recognizable nanogels as gates on interconnected pores for simple and rapid detection of trance lead(II) ions in water. J Membr Sci 575:28–37

    Article  CAS  Google Scholar 

  28. Lu Z, Lin X, Zhang J, Dai W, Liu B, Mo G, Ye J, Ye J (2019) Ionic liquid/ploy-L-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochim Acta 295:514–523

    Article  CAS  Google Scholar 

  29. Ding J, Liu Y, Zhang D, Yu M, Zhang X, Zhang D, Zhou P (2018) An electrochemical aptasensor based on gold@polypyrrole composite for detection of lead ions. Microchim Acta 185:545

    Article  Google Scholar 

  30. Xiao S, Chen L, Xiong X, Zhang Q, Feng J, Deng S, Zhou L (2018) A new impedimetric sensor based on anionic intercalator for detection of lead ions with low cost and high sensitivity. J Electroanal Chem 827:175–180

    Article  CAS  Google Scholar 

  31. Thirumalai M, Kumar S, Prabhakaran D, Sivaraman N, Maheswari M (2018) Dynamically modified C18 silica monolithic column for the rapid determination of lead, cadmium and mercury ions by reversed-phase high-performance liquid chromatography. J Chromatogr 1569:62–69

    Article  CAS  Google Scholar 

  32. Wang H, Ma L, Fang B, Zhao Y, Hu X (2018) Graphene oxide-assisted Au nanoparticle strip biosensor based on GR-5 DNAzyme for rapid lead ion detection. Colloids Surf B 169:305–312

    Article  CAS  Google Scholar 

  33. Li P, Li J, Bian M, Huo D, Hou C, Yang P, Zhang S, Shen C, Yang M (2018) A redox route for the fluorescence detection of lead ions in sorghum, river water and tap water and a desk study of a paper-based probe. Anal Methods 10:3256–3262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledged financial support from the National Natural Science Foundation of China (Grant nos.: 21675029 & 201874022) and the Health-Education Joint Research Project of Fujian Province (Grant no.: WKJ2016-2-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dianping Tang or Qian Zhou.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Xia, B., Tang, Y. et al. Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification, glucose oxidase, and readout of pH changes. Microchim Acta 186, 318 (2019). https://doi.org/10.1007/s00604-019-3454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3454-1

Keywords

Navigation