Skip to main content
Log in

Near-infrared-emitting persistent luminescent nanoparticles modified with gold nanorods as multifunctional probes for detection of arsenic(III)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Near infrared (NIR)-emitting persistent luminescent nanoparticles (PLNPs) have advantages such as long afterglow, high photostability and deep tissue spectral penetration. A NIR-emitting inner filter effect (IFE) probe for arsenic(III) is described here. It is composed of polyethyleneimine-coated PLNPs and gold nanorods (AuNPs) coated with dithiothreitol. The probe can detect arsenic(III) (= arsenite) selectively even in the presence of interfering substances. The PLNPs and AuNPs were prepared by a hydrothermal method combined with high-temperature calcination and seed-mediated growth mechanism, respectively. The PLNPs show excellent NIR luminescence (with excitation/emission peaks at 254/695 nm) and long afterglow (lifetime >1200 s). The use of polyethyleneimine improves water solubility and provides positive surface charges for the PLNPs. On exposure to arsenite ions, the luminescence of the probe at 695 nm is restored. Under the optimum conditions, the method can detect As(III) in the 0.067 to 13.4 μmol·L−1 concentration range with good linear relationship (R2 = 0.99734), and the detection limit (at S/N = 3) is 55 nmol·L−1. The precision of this method was demonstrated by 11 replicate detections of 2 μmol·L−1 As(III), and the relative standard deviations (RSD) is 2.1%. The practicality was evaluated by the analyses of real water samples and recoveries for the water samples spiked with 2, 5 and 10 μmol·L−1 of As(III) were 89.8%–100.1% with RSDs ranging from 3.0–5.7%.

A near infrared-emitting inner filter effect (IFE) inhibition probe is presented. It is based on the combination of polyethyleneimine (PEI)-coated NIR-emitting persistent luminescent nanoparticles (type Zn1.25Ga1.5Ge0.25O4: Cr3+, ZGGO) (PLNPs-PEI) with dithiothreitol (DTT)-coated gold nanorods (AuNPs) (DTT-AuNPs) to detect arsenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He X, Wang K, Cheng Z (2010) In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):349–366. https://doi.org/10.1002/wnan.85

    Article  CAS  PubMed  Google Scholar 

  2. Priyadarshni N, Nath P, Nagahanumaiah, Chanda N (2018) DMSA-functionalized gold Nanorod on paper for colorimetric detection and estimation of arsenic (III and V) contamination in groundwater. Acs Sustainable Chemistry & Engineering

  3. Yan F, Wang M, Cao D, Yang N, Fu Y, Chen L, Chen L (2013) New fluorescent and colorimetric chemosensors based on the rhodamine detection of Hg2+ and Al3+ and application of imaging in living cells. Dyes Pigments 98(1):42–50. https://doi.org/10.1016/j.dyepig.2013.02.002

    Article  CAS  Google Scholar 

  4. Liu H, Wang B, Li D, Zeng X, Tang X, Gao Q, Cai J, Cai HH (2018) MoS2 nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide. Microchim Acta 185(6):287. https://doi.org/10.1007/s00604-018-2792-8

    Article  CAS  Google Scholar 

  5. Lee KY, Seow E, Zhang Y, Lim YC (2013) Targeting CCL21-folic acid-upconversion nanoparticles conjugates to folate receptor-alpha expressing tumor cells in an endothelial-tumor cell bilayer model. Biomaterials 34(20):4860–4871. https://doi.org/10.1016/j.biomaterials.2013.03.029

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Wang Y, Liu L, Wu X, Xu L, Kuang H, Li A, Xu C (2015) A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen beta-lactams. Nanoscale 7(39):16381–16388. https://doi.org/10.1039/c5nr04987c

    Article  CAS  PubMed  Google Scholar 

  7. Maldiney T, Kaikkonen MU, Seguin J, le Masne de Chermont Q, Bessodes M, Airenne KJ, Yla-Herttuala S, Scherman D, Richard C (2012) In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. Bioconjug Chem 23(3):472–478. https://doi.org/10.1021/bc200510z

    Article  CAS  PubMed  Google Scholar 

  8. Abdukayum A, Yang CX, Zhao Q, Chen JT, Dong LX, Yan XP (2014) Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal Chem 86(9):4096–4101. https://doi.org/10.1021/ac500644x

    Article  CAS  PubMed  Google Scholar 

  9. Maldiney T, Bessiere A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C (2014) The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat Mater 13(4):418–426. https://doi.org/10.1038/nmat3908

    Article  CAS  PubMed  Google Scholar 

  10. Liu G, Zhang Q, Wang H, Li Y (2012) A reddish La2O2S-based long-afterglow phosphor with effective absorption in the visible light region. Mater Sci Eng B 177(3):316–320. https://doi.org/10.1016/j.mseb.2011.12.045

    Article  CAS  Google Scholar 

  11. Pan Z, Lu YY, Liu F (2012) Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates. Nat Mater 11(1):58–63. https://doi.org/10.1038/nmat3173

    Article  CAS  Google Scholar 

  12. Abdukayum A, Chen JT, Zhao Q, Yan XP (2013) Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J Am Chem Soc 135(38):14125–14133. https://doi.org/10.1021/ja404243v

    Article  CAS  PubMed  Google Scholar 

  13. Bessiere A, Al E et al (2014) ChemInform abstract: storage of visible light for long-lasting phosphorescence in chromium-doped zinc Gallate. Cheminform 45(18):no–no

    Article  Google Scholar 

  14. Li Y, Chen R, Li Y, Sharafudeen K, Liu S, Wu D, Wu Y, Qin X, Qiu J (2015) Folic acid-conjugated chromium(III) doped nanoparticles consisting of mixed oxides of zinc, gallium and tin, and possessing near-infrared and long persistent phosphorescence for targeted imaging of cancer cells. Microchim Acta 182(9–10):1827–1834. https://doi.org/10.1007/s00604-015-1486-8

    Article  CAS  Google Scholar 

  15. Wang XS, Situ JQ, Ying XY, Chen H, Pan HF, Jin Y, Du YZ (2015) Beta-Ga2O3:Cr(3+) nanoparticle: a new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously. Acta Biomater 22:164–172. https://doi.org/10.1016/j.actbio.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  16. Maldiney T, Byk G, Wattier N, Seguin J, Khandadash R, Bessodes M, Richard C, Scherman D (2012) Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability. Int J Pharm 423(1):102–107. https://doi.org/10.1016/j.ijpharm.2011.06.048

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Liu JM, Zhang D, Ge K, Wang P, Liu H, Fang G, Wang S (2017) Persistent luminescence nanophosphor involved near-infrared optical bioimaging for investigation of foodborne probiotics biodistribution in vivo: a proof-of-concept study. J Agric Food Chem 65(37):8229–8240. https://doi.org/10.1021/acs.jafc.7b02870

    Article  CAS  PubMed  Google Scholar 

  18. Wu BY, Wang HF, Chen JT, Yan XP (2011) Fluorescence resonance energy transfer inhibition assay for alpha-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J Am Chem Soc 133(4):686–688. https://doi.org/10.1021/ja108788p

    Article  CAS  PubMed  Google Scholar 

  19. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  20. Li Y, Cai J, Liu F, Yu H, Lin F, Yang H, Lin Y, Li S (2018) Highly crystalline graphitic carbon nitride quantum dots as a fluorescent probe for detection of Fe(III) via an innner filter effect. Microchim Acta 185(2):134. https://doi.org/10.1007/s00604-017-2655-8

    Article  CAS  Google Scholar 

  21. Guo J, Li Y, Wang L, Xu J, Huang Y, Luo Y, Shen F, Sun C, Meng R (2016) Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Anal Bioanal Chem 408(2):557–566. https://doi.org/10.1007/s00216-015-9132-1

    Article  CAS  PubMed  Google Scholar 

  22. Li S, Shaojun D (2009) Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Anal Chem 81(4):1465–1470

    Article  Google Scholar 

  23. le Masne de Chermont Q, Chaneac C, Seguin J, Pelle F, Maitrejean S, Jolivet JP, Gourier D, Bessodes M, Scherman D (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci U S A 104(22):9266–9271. https://doi.org/10.1073/pnas.0702427104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maldiney T, Doan B-T, Alloyeau D, Bessodes M, Scherman D, Richard C (2015) Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv Funct Mater 25(2):331–338. https://doi.org/10.1002/adfm.201401612

    Article  CAS  Google Scholar 

  25. Ge K, Liu J, Fang G, Wang P, Zhang D, Wang S (2018) A colorimetric probe based on functionalized gold Nanorods for sensitive and selective detection of as(III) ions. Sensors (Basel) 18(7). https://doi.org/10.3390/s18072372

  26. Li L, Li B (2009) Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134(7):1361–1365. https://doi.org/10.1039/b819842j

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Li Y, Wang H, Fu Q, Peng J, Wang Y, Du J, Zhou Y, Zhan L (2010) Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens Bioelectron 26(2):404–410. https://doi.org/10.1016/j.bios.2010.07.121

    Article  CAS  PubMed  Google Scholar 

  28. Singh SK (2014) Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Adv 4(102):58674–58698. https://doi.org/10.1039/c4ra08847f

    Article  CAS  Google Scholar 

  29. Shrivas K, Shankar R, Dewangan K (2015) Gold nanoparticles as a localized surface plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples. Sensors Actuators B Chem 220:1376–1383. https://doi.org/10.1016/j.snb.2015.07.058

    Article  CAS  Google Scholar 

  30. Butwong N, Noipa T, Burakham R, Srijaranai S, Ngeontae W (2011) Determination of arsenic based on quenching of CdS quantum dots fluorescence using the gas-diffusion flow injection method. Talanta 85(2):1063–1069. https://doi.org/10.1016/j.talanta.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  31. Gupta A, Verma NC, Khan S, Nandi CK (2016) Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection. Biosens Bioelectron 81:465–472. https://doi.org/10.1016/j.bios.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  32. Ramesha GK, Sampath S (2011) In-situ formation of graphene–lead oxide composite and its use in trace arsenic detection. Sensors Actuators B Chem 160(1):306–311. https://doi.org/10.1016/j.snb.2011.07.053

    Article  CAS  Google Scholar 

  33. Li Z, Shi J, Zhang H, Sun M (2014) Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo. Opt Express 22(9):10509–10518. https://doi.org/10.1364/OE.22.010509

    Article  CAS  PubMed  Google Scholar 

  34. Linhart O, Smolejová J, Červený V, Hraníček J, Nováková E, Resslerová T, Rychlovský P (2016) Determination of as by UV-photochemical generation of its volatile species with AAS detection. Monatshefte für Chemie - Chemical Monthly 147(8):1447–1454. https://doi.org/10.1007/s00706-016-1808-5

    Article  CAS  Google Scholar 

  35. Ma J, Sengupta MK, Yuan D, Dasgupta PK (2014) Speciation and detection of arsenic in aqueous samples: a review of recent progress in non-atomic spectrometric methods. Anal Chim Acta 831:1–23. https://doi.org/10.1016/j.aca.2014.04.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21806083), the Science and Technology Program of Tianjin, China (project No. 17ZYPTJC00050) and the Ministry of Science and Technology of China (project No. 2017YFC1600803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhen Fang or Shuo Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 146 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, K., Liu, J., Wang, P. et al. Near-infrared-emitting persistent luminescent nanoparticles modified with gold nanorods as multifunctional probes for detection of arsenic(III). Microchim Acta 186, 197 (2019). https://doi.org/10.1007/s00604-019-3294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3294-z

Keywords

Navigation