Skip to main content
Log in

Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A rapid method for identification and typing of lipopolysaccharides (LPS) was developed by utilizing the different binding affinities between two kinds of gold nanoparticles (AuNPs) functionalized with two aptamers. Aptamers against ethanolamine and E. coli O111:B4 LPS were used to functionalize the AuNPs. The AuNPs functionalized with ethanolamine aptamer can bind to ethanolamine and are termed general probe (G-probe). The G-probe can recognize any type of LPS because ethanolamine is a component of every type of LPS. This causes a sandwich-mediated aggregation of the AuNPs and a color change from red to blue. The AuNPs functionalized with aptamer against the LPS of E. coli O111:B4 specifically bind to O111:B4 LPS and are termed specific probe (S-probe). By using these two probes, a logic typing method was developed. It can detect LPS in concentrations between 2.5 and 20 μg·mL−1 and with a 1 μg·mL−1 detection limit. In the authors’ perception, the use of a dual aptamer-based colorimetric method has a large potential in terms of selective detection of microorganisms.

Two aptamer functionalized AuNP probes, G-probe and S-probe, were prepared for LPS typing and detecting. E. coli O111:B4 LPS was easily distinguished from O55:B5 LPS according to the signal output configurations (On & On Vs On & Off) of a general probe (G-probe) and a specific probe (S-probe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Wang J, Wang LH, Liu XF, Liang ZQ, Song SP, Li WX, Li G, Fan CH (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946

    Article  CAS  Google Scholar 

  2. Bryant MP, Burkey LA (1953) Cultural methods and some characteristics of some of the more numerous groups of Bacteria in the bovine rumen. J Dairy Sci 36:205–217

    Article  Google Scholar 

  3. Nowrouzian FL, Stadler LS, Adlerberth I, Wold AE (2017) The 16S rRNA gene-based PCR method used for the detection of segmented filamentous bacteria in the intestinal microbiota generates false-positive results. APMIS 125:940–942

    Article  CAS  Google Scholar 

  4. Akkaya O, Guvenc HI, Yuksekkaya S, Opus A, Guzelant A, Kaya M, Kurtoglu MG, Kaya N (2017) Real-time PCR detection of the Most common Bacteria and viruses causing meningitis. Clin Lab 63:827–832

    Article  CAS  Google Scholar 

  5. Pandey CM, Tiwari I, Singh VN, Sood KN, Sumana G, Malhotra BD (2017) Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria. Sensor Actuat B-Chem 238:1060–1069

    Article  CAS  Google Scholar 

  6. de Boer E, Beumer RR (1999) Methodology for detection and typing of foodborne microorganisms. Int J Food Microbiol 50:119–130

    Article  Google Scholar 

  7. Chen PS, Li CS (2005) Real-time quantitative PCR with gene probe, fluorochrome and flow cytometry for microorganism analysis. J Environ Monit 7:257–262

    Article  CAS  Google Scholar 

  8. Gurtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology-Sgm 142:3–16

    Article  Google Scholar 

  9. Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  Google Scholar 

  10. Foto M, Plett J, Berghout J, Miller JD (2004) Modification of the Limulus amebocyte lysate assay for the analysis of glucan in indoor environments. Anal Bioanal Chem 379:156–162

    Article  CAS  Google Scholar 

  11. Yao MS, Zhang HL, Dong SF, Zhen SQ, Chen XD (2009) Comparison of electrostatic collection and liquid impinging methods when collecting airborne house dust allergens, endotoxin and (1,3)-beta-d-glucans. J Aerosol Sci 40:492–502

    Article  CAS  Google Scholar 

  12. Zhu ZX, Cong WT, Ni MW, Wang X, Ma WD, Ye WJ, Jin LT, Li XK (2012) An improved silver stain for the visualization of lipopolysaccharides on polyacrylamide gels. Electrophoresis 33:1220–1223

    Article  CAS  Google Scholar 

  13. Heckel A, Mayer G (2005) Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases. J Am Chem Soc 127:822–823

    Article  CAS  Google Scholar 

  14. Ellington AD, Szostak JW (1990) Invitro Selection Of Rna Molecules That Bind Specific Ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  15. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment - Rna ligands to bacteriophage-T4 DNA-polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  16. Mann D, Reinemann C, Stoltenburg R, Strehlitz B (2005) In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun 338(4):1928–1934

    Article  CAS  Google Scholar 

  17. Tang LH, Liu Y, Ali MM, Kang DK, Zhao WA, Li JH (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84:4711–4717

    Article  CAS  Google Scholar 

  18. Gao WC, Li B, Yao RZ, Li ZP, Wang XW, Dong XL, Qu H, Li QX, Li N, Chi H, Zhou B, Xia ZP (2017) Intuitive label-free SERS detection of Bacteria using aptamer-based in situ silver nanoparticles synthesis. Anal Chem 89:9836–9842

    Article  CAS  Google Scholar 

  19. Xu YS, Wang H, Luan CX, Liu YX, Chen BA, Zhao YJ (2018) Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosens Bioelectron 100:404–410

    Article  CAS  Google Scholar 

  20. Abbaspour A, Norouz-Sarvestani F, Noon A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68:149–155

    Article  CAS  Google Scholar 

  21. Xu W, Xue XJ, Li TH, Zeng HQ, Liu XG (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48:6849–6852

    Article  CAS  Google Scholar 

  22. Bruno JG, Carrillo MP, Phillips T (2008) In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes. Folia Microbiol 53:295–302

    Article  CAS  Google Scholar 

  23. Huge BJ, Flaherty RJ, Dada OO, Dovichi NJ (2014) Capillary electrophoresis coupled with automated fraction collection. Talanta 130:288–293

    Article  CAS  Google Scholar 

  24. Kim SE, Su W, Cho M, Lee Y, Choe WS (2012) Harnessing aptamers for electrochemical detection of endotoxin. Anal Biochem 424:12–20

    Article  CAS  Google Scholar 

  25. Verma MS, Rogowski JL, Jones L, Gu FX (2015) Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol Adv 33:666–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No.31871875, No. 3180162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Xu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 80.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Li, S., Shao, X. et al. Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Microchim Acta 186, 111 (2019). https://doi.org/10.1007/s00604-018-3212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3212-9

Keywords

Navigation