Skip to main content

Advertisement

Log in

A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A Cr-based metal-organic framework MIL-101(Cr) was used to load platinum nanoparticles (PtNPs) that were placed on a glassy carbon electrode (GCE). The modified GCE was used as a non-enzymatic xanthine sensor. Compared to bare GCE, it requires a strongly decreased working potential and an increased signal current for xanthine oxidation. This is due to the crystalline ordered structure and large specific surface of the MIL-101(Cr), and to the high conductivity of the Pt NPs. Differential pulse voltammetry (DPV) shows the sensor to have a wide linear range (0.5 – 162 μM), a low detection limit (0.42 μM), and high selectivity. It was applied to the simultaneous determination of dopamine, uric acid, xanthine and hypoxanthine at working potentials of 0.13, 0.28, 0.68 and 1.05 V, respectively (vs. Ag/AgCl) and to quantify xanthine in spiked serum samples.

This is the first report of non-enzymatic xanthine electrochemical sensor based on metal-organic framework loaded with nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mu SL, Shi QF (2013) Xanthine biosensor based on the direct oxidation of xanthine at an electrogenerated oligomer film. Biosens Bioelectron 47:429–435

    Article  CAS  PubMed  Google Scholar 

  2. Pagliarussia RS, Freitasa LAP, Bastosa JK (2002) A quantitative method for the analysis of xanthine alkaloids in Paullinia cupana (guarana) by capillary column gas chromatography. J Sep Sci 25:371–374

    Article  Google Scholar 

  3. Cooper N, Khosravan R, Erdmann C, Fiene J, Lee JW (2006) Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. J Chromatogr B 837:1–10

    Article  CAS  Google Scholar 

  4. Beckman JS, Parks DA, Pearson JD, Marshall PA, Freeman BA (1989) A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues. Free Radical Bio Med 6:607–615

    Article  CAS  Google Scholar 

  5. Hlavay J, Haemmerli SD, Guilbault GG (1994) Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction. Biosens Bioelectron 9:189–195

    Article  CAS  PubMed  Google Scholar 

  6. Amigo JM, Coello J, Maspoch S (2005) Three-way partial least-squares regression for the simultaneous kinetic-enzymatic determination of xanthine and hypoxanthine in human urine. Anal Bioanal Chem 382:1380–1388

    Article  CAS  PubMed  Google Scholar 

  7. Shan D, Wang YN, Zhu MJ, Xue HG, Cosnier S, Wang CY (2009) Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol. Biosens Bioelectron 24:1171–1176

    Article  CAS  PubMed  Google Scholar 

  8. Rafiee M, Khalafi L (2010) The electrochemical study of catecholamine reactions in the presence of nitrite ion under mild acidic conditions. Electrochim Acta 55:1809–1813

    Article  CAS  Google Scholar 

  9. Zhang X, Luo JS, Tang PY, Morante JR, Arbiol J, Xu CL, Li QF, Fransaer J (2018) Ultrasensitive binder-free glucose sensors based on the pyrolysis of in situ grown cu MOF. Sensor Actuat B-Chem 254:272–281

    Article  CAS  Google Scholar 

  10. Zhu D, Ma HY, Pang HJ, Tan LC, Jiao J, Chen T (2018) Facile fabrication of a non-enzymatic nanocomposite of heteropolyacids and CeO2@Pt alloy nanoparticles doped reduced graphene oxide and its application towards the simultaneous determination of xanthine and uric acid. Electrochim Acta 266:54–65

    Article  CAS  Google Scholar 

  11. Ibrahim H, Temerk Y (2016) A novel electrochemical sensor based on B doped CeO2 nanocubes modified glassy carbon microspheres paste electrode for individual and simultaneous determination of xanthine and hypoxanthine. Sensor Actuat B-Chem 232:125–137

    Article  CAS  Google Scholar 

  12. Wang M, Zheng ZX, Liu JJ, Wang CM (2017) Pt-Pd bimetallic nanoparticles decorated nanoporous graphene as a catalytic amplification platform for electrochemical detection of xanthine. Electroanal 29:1–10

    Article  CAS  Google Scholar 

  13. Dervisevic M, Dervisevic E, Cevik E, Senel M (2017) Novel electrochemical xanthine biosensor based on chitosan-polypyrrole-gold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal 25:510–519

    Article  CAS  PubMed  Google Scholar 

  14. Zhang XJ, Dong JP, Qian XZ, Zhao CJ (2015) One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sensor Actuat B-Chem 221:528–536

    Article  CAS  Google Scholar 

  15. Yin DD, Liu J, Bo XJ, Li M, Guo LP (2017) Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications. Electrochim Acta 247:41–49

    Article  CAS  Google Scholar 

  16. Tan CH, Zhang WX, Zheng JZ, You XL, Lin X, Li SX (2015) Fabrication of metal–organic single crystalline nanowires and reduced graphene oxide enhancement for an ultrasensitive electrochemical biosensor. J Mater Chem B 3:7117–7124

    Article  CAS  Google Scholar 

  17. Liu LT, Zhou YL, Liu S, Xu MT (2018) The applications of metal−organic frameworks in electrochemical sensors. ChemElectroChem 5:6–19

    Article  CAS  Google Scholar 

  18. Tang J, Jiang SX, Liu Y, Zheng SB, Bai L, Guo JH, Wang JF (2018) Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Microchim Acta 185:486–496

    Article  CAS  Google Scholar 

  19. Peng ZW, Jiang ZW, Huang X, Li YF (2016) A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode. RSC Adv 6(17):13742–13748

    Article  CAS  Google Scholar 

  20. Bas SZ, Gulce H, Yildiz S, Gulce A (2011) Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection. Talanta 87:189–196

    Article  CAS  PubMed  Google Scholar 

  21. Yang Q, Xu Q, Jiang HL (2017) Metal–organic frameworks meet metalnanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46:4774–4808

    Article  CAS  PubMed  Google Scholar 

  22. Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J Phys Chem B 103:3818–3827

    Article  CAS  Google Scholar 

  23. Zhao MT, Yuan K, Wang Y, Li GD, Guo J, Gu L, Hu WP, Zhao HJ, Tang ZY (2016) Metal–organic frameworks as selectivity regulatorsfor hydrogenation reactions. Nature 539:76–80

    Article  CAS  PubMed  Google Scholar 

  24. Li YZ, Huang FC, Du HJ, Liu WB, Li YW, Ye JS (2013) Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: an excellent candidate for electroanalysis. J Electroanal Chem 709:65–69

    Article  CAS  Google Scholar 

  25. Maksimchuk N, Timofeeva M, Melgunov M, Shmakov A, Chesalov Y, Dybtsev D, Fedin V, Kholdeeva O (2008) Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J Catal 257:315–323

    Article  CAS  Google Scholar 

  26. Ezhil Vilian AT, Dinesh B, Muruganantham R, Choe SR, Kang SM, Huh YS, Han YK (2017) A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite. Microchim Acta 184:4793–4801

    Article  CAS  Google Scholar 

  27. Luan Y, Yang M, Ma QQ, Qi Y, Gao HY, Wu ZY, Wang G (2016) Introduction of an organic acid phase changing material intometal-organic frameworks and the study of its thermal properties. J Mater Chem A 4:7641–7649

    Article  CAS  Google Scholar 

  28. Hong DY, Hwang YK, Serre C, Férey G, ChangJ S (2009) Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis. Adv Fun Mater 19:1537–1552

    Article  CAS  Google Scholar 

  29. Gobara HM, Mohamed RS, Hassan SA, Khalil FH, El-Sall MS (2016) Pt and Ni nanoparticles anchored into metal–organic frameworks MIL-101 (Cr) as swiftcatalysts for ethanol dehydration. Catal Lett 146:1875–1885

    Article  CAS  Google Scholar 

  30. Zhang C, Hong Y, Dai R, Lin X, Long LS, Wang C, Lin W (2015) Highly active hydrogen evolution electrodes via co-deposition of platinum and polyoxometalates. ACS Appl Mater Inter 7:11648–11653

    Article  CAS  Google Scholar 

  31. Wang X, Lu XB, Wu LD, Chen JP (2015) 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol a. Biosens Bioelectron 65:295–301

    Article  CAS  PubMed  Google Scholar 

  32. Wu XQ, Ma JG, Li H, Chen DM, Gu W, Yang GM, Cheng P (2015) Metal–organic framework biosensor with highstability and selectivity in a bio-mimic environment. Chem Commun 51:9161–9164

    Article  CAS  Google Scholar 

  33. Shahzad F, Zaidi SA, Koo CM (2017) Highly sensitive electrochemical sensor based on environmentally friendly biomass-derived sulfur-doped graphene for cancer biomarker detection. Sensor Actuat B-Chem 241:716–724

    Article  CAS  Google Scholar 

  34. Wang X, Wang QX, Wang QH, Gao F, Gao F, Yang YZ, Guo HX (2014) Highly dispersible and stable copper terephthalate metal–organic framework−graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Inter 6:11573–11580

    Article  CAS  Google Scholar 

  35. Wang QX, Yang YZ, Gao F, Ning JC, Zhang YH, Lin ZY (2016) Graphene oxide directed one-step synthesis of flowerlike graphene@ HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples. ACS Appl Mater Inter 8(47):32477–32487

    Article  CAS  Google Scholar 

  36. Yi FY, Zhang R, Wang HL, Chen LF, Han L, Jiang HL, Xu Q (2017) Metal–organic frameworks and their composites: synthesis and electrochemical applications. Small Methods 1(11):1700187

    Article  CAS  Google Scholar 

  37. Dong SY, Suo GC, Li N, Chen Z, Peng L, Fu YL, Huang TL (2016) A simple strategy to fabricate high sensitive 2, 4-dichlorophenol electrochemical sensor based on metal organic framework Cu3(BTC)2. Sensor Actuat B-Chem 222:972–979

    Article  CAS  Google Scholar 

  38. Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR (2011) Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc 133(11):3693–3695

    Article  CAS  PubMed  Google Scholar 

  39. Yang W, Lu W, Chen H, Hu X, Ma S (1944) Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal–metalloporphyrin framework modified electrode. ACS Appl Mater Inter 8(28):18173–18181

    Google Scholar 

  40. Li YC, Jiang YY, Song YY, Li YH, Li SX (2018) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres. Microchim Acta 185(8):382–390

    Article  CAS  Google Scholar 

  41. Ghazizadeh AJ, Afkhami A, Bagheri H (2018) Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Microchim Acta 185(6):296–305

    Article  CAS  Google Scholar 

  42. Liu XF, Ou X, Lu QY, Zhang JJ, Chen SH, Wei SP (2014) Electrochemical sensor based on overoxidized dopamine polymer and 3, 4, 9, 10-perylenetetracarboxylic acid for simultaneous determination of ascorbic acid, dopamine, uric acid, xanthine and hypoxanthine. RSC Adv 4(80):42632–42637

    Article  CAS  Google Scholar 

  43. Kalimuthu P, Leimkühler S, Bernhardt PV (2012) Low-potential amperometric enzyme biosensor for xanthine and hypoxanthine. Anal Chem 84(23):10359–10365

    Article  CAS  PubMed  Google Scholar 

  44. Sha R, Vishnu N, Badhulika S (2018) Bimetallic Pt-Pd nanostructures supported on MoS2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Microchim Acta 185(8):399–409

    Article  CAS  Google Scholar 

  45. Naghian E, Najafi M (2018) Carbon paste electrodes modified with SnO2/CuS, SnO2/SnS and cu@ SnO2/SnS nanocomposites as voltammetric sensors for paracetamol and hydroquinone. Microchim Acta 185(9):406–413

    Article  CAS  Google Scholar 

  46. Kumar AS, Swetha P (2010) Ru(DMSO)4Cl2 nano-aggregated Nafion membrane modified electrode for simultaneous electrochemical detection of hypoxanthine, xanthine and uric acid. J Electroanal Chem 642:135–142

    Article  CAS  Google Scholar 

  47. Lavanya N, Sekar C, Murugan R, Ravi G (2016) An ultrasensitive electrochemical sensor for simultaneous determinationof xanthine, hypoxanthine and uric acid based on co doped CeO2 nanoparticles. Mat Sci Eng C 65:278–286

    Article  CAS  Google Scholar 

  48. Xu GB, Cui JM, Liu H, Gao GG, Qiu YF, Zhang SM, Wu DM (2015) Highly selective detection of cellular guanine and xanthine by polyoxometalate modified 3D graphene foam. Electrochim Acta 168:32–40

    Article  CAS  Google Scholar 

  49. Ibrahim H, Temerk Y (2016) Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J Electroanal Chem 780:176–186

    Article  CAS  Google Scholar 

  50. Pierini GD, Robledo SN, Zon MA, Di Nezio MS, Granero AM, Fernández H (2018) Development of an electroanalytical method to control quality in fish samples based on an edge plane pyrolytic graphite electrode. Simultaneous determination of hypoxanthine, xanthine and uric acid. Microchem J 138:58–64

    Article  CAS  Google Scholar 

  51. Rahman MM, Balkhoyor HB, Asiri AM (2017) Ultra-sensitive xanthine sensor development based on wet-chemically prepared co/ZnO nanoparticles. Mater Express 7(2):93–103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NSF of China (21671049, 51572063, 21603113 and 21701037), postdoctoral science foundation, China (2017 M611380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyuan Ma.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1.55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, S., Xin, J. et al. A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Microchim Acta 186, 9 (2019). https://doi.org/10.1007/s00604-018-3128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3128-4

Keywords