Skip to main content
Log in

Amplified photoelectrochemical immunoassay for the tumor marker carbohydrate antigen 724 based on dye sensitization of the semiconductor composite C3N4-MoS2

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an amplified photoelectrochemical immunoassay for the tumor marker carbohydrate antigen 724 (CA724). The method employs a C3N4-MoS2 semiconductor as the photoelectric conversion layer. The nanocomposite was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. The dye eosin Y was encapsulated into CaCO3 nanospheres which then were used as labels for antibody against CA724. In addition, Fe3O4 nanospheres were employed as magnetic platform for constructing photoelectrochemical sandwich immunoassay. The CaCO3 nanospheres can be dissolved with aid of ethylene diamine tetraacetic acid (EDTA) and the carried eosin Y in CaCO3 is released. The released dyes sensitizes the C3N4-MoS2 semiconductor, which induces photocurrent amplification. Under optimal conditions and at a typical working voltage of 0 V (vs. SCE), the photocurrent increases linearly in the range of 0.05 mU mL−1 to 500 mU mL−1 of CA724, with a 0.02 mU mL−1 detection limit.

The C3N4-MoS2 complex, with high efficiency of electron transport, was synthesized to construct a photoelectrochemical analytical platform. A sandwich-type immunoassay was established on the surface of magnetic beads. Carbohydrate antigen 724 in sample was detected sensitively by using sensitization of released eosin Y as signal amplifiery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade P, Zhang S, Zeng H, Bray F, Jemal A, Yu X, He J (2015) Cancer statistics in China. 2015 Ca Cancer J Clin 66:115–132

    Article  CAS  Google Scholar 

  2. Mahato K, Kumar A, Maurya P, Chandra P (2018) Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens Bioelectron 100:411–428

    Article  CAS  Google Scholar 

  3. Sugumarana S, Jamlosa M, Ahmad M, Bellanc C, Schreurs D (2018) Nanostructured materials with plasmonic nanobiosensors for early cancer. Biosens Bioelectron 100:361–373

    Article  Google Scholar 

  4. Cheng W, Pan J, Yang J, Zheng Z, Lu F, Chen Y, Gao W (2018) A photoelectrochemical aptasensor for thrombin based on the use of carbon quantum dot-sensitized TiO2 and visible-light photoelectrochemical activity. Microchim Acta 185:263

    Article  Google Scholar 

  5. Liu X, Xie X, Wei Y, Mao C, Chen J, Niu H, Song J, Jin B (2018) Photoelectrochemical immunoassay for human interleukin 6 based on the use of perovskite-type LaFeO3 nanoparticles on fluorine-doped tin oxide glass. Microchim Acta 185:52

    Article  Google Scholar 

  6. Qin C, Bai X, Zhang Y, Gao K (2018) Photoelectrochemical CdSe/TiO2 nanotube array microsensor for high-resolution in-situ detection of dopamine. Microchim Acta 185:278

    Article  Google Scholar 

  7. Wang M, Yin H, Zhou Y, Han J, He T, Cui L, Ai S (2018) Photoelectrochemical biosensor for microRNA detection based on multiple amplification strategies. Microchim Acta 185:257

    Article  Google Scholar 

  8. Zhang L, Wang W, Chen Z, Zhou L, Xu H, Zhu W (2007) Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J Mater Chem 17:2526–2532

    Article  CAS  Google Scholar 

  9. Dong Z, Ding D, Li T, Ning C (2018) Black Si-doped TiO2 nanotube photoanode for high-efficiency photoelectrochemical water splitting. RSC Adv 8:5652–5660

    Article  CAS  Google Scholar 

  10. Regan K, Swierk J, Neu J, Schmuttenmaer C (2017) Frequency-dependent terahertz transient photoconductivity of mesoporous SnO2 films. J Phys Chem C 121:15949–15956

    Article  CAS  Google Scholar 

  11. Bera A, Ghosh T, Basak D (2010) Enhanced photoluminescence and photoconductivity of ZnO nanowires with sputtered Zn. ACS Appl Mater Interfaces 2:2898–2903

    Article  CAS  Google Scholar 

  12. Qileng A, Yang S, Wei J, Lu N, Lei H, Liu Y, Liu W (2018) Construction of CdS/Ag2S-based broad-spectrum photoelectrochemical immunosensor for simultaneous assessment of ochratoxins by multivariable linear regression. Sensor Actuat B-Chem 267:216–223

    Article  CAS  Google Scholar 

  13. Yang R, Zou K, Li Y, Meng L, Zhang X, Chen J (2018) Co3O4–au polyhedra: a multifunctional signal amplifier for sensitive photoelectrochemical assay. Anal Chem 90:9480–9486

    Article  CAS  Google Scholar 

  14. Xiong M, Rong Q, Meng H, Zhang X (2017) Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens Bioelectron 89:212–223

    Article  CAS  Google Scholar 

  15. Huang L, Li Y, Xu H, Xu Y, Xia J, Wang K, Li H, Cheng X (2013) Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity. RSC Adv 3:22269–22279

    Article  CAS  Google Scholar 

  16. Shi L, Ding W, Yang S, He Z, Liu S (2018) Rationally designed MoS2/protonated g-C3N4 nanosheet composites as photocatalysts with an excellent synergistic effect toward photocatalytic degradation of organic pollutants. J Hazard Mater 347:431–441

    Article  CAS  Google Scholar 

  17. Fu Y, Liang W, Guo J, Tang H, Liu S (2018) MoS2 quantum dots decorated g-C3N4/ag heterostructures for enhanced visible light photocatalytic activity. Appl Surf Sci 430:234–242

    Article  CAS  Google Scholar 

  18. Dang X, Zhao H, Wang X, Sailijiang T, Chen S, Quan X (2018) Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide. Microchim Acta 185:345

    Article  Google Scholar 

  19. Sun L, Du T, Hu C, Chen J, Lu J, Lu Z, Han H (2017) Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain Chem Eng 5:8693–8701

    Article  CAS  Google Scholar 

  20. Katsumata H, Sakai T, Suzuki T, Kaneco S (2014) Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light. Ind Eng Chem Res 53:8018–8025

    Article  CAS  Google Scholar 

  21. Liu L, Qi Y, Hu J, An W, Lin S, Liang Y, Cui W (2015) Stable Cu2O@g-C3N4 core@shell nanostructures: efficient visible-light photocatalytic hydrogen evolution. Mater Lett 158:278–281

    Article  CAS  Google Scholar 

  22. Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho W (2013) In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces 5:11392–11401

    Article  CAS  Google Scholar 

  23. Li J, Liu E, Ma Y, Hu X, Wan J, Sun L, Fan J (2016) Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl Surf Sci 364:694–702

    Article  CAS  Google Scholar 

  24. Wen G, Ju H (2016) Enhanced photoelectrochemical proximity assay for highly selective protein detection in biological matrixes. Anal Chem 88:8339–8345

    Article  CAS  Google Scholar 

  25. Zhu Y, Zhang N, Ruan Y, Zhao W, Xu J, Chen H (2016) Alkaline phosphatase tagged antibodies on gold nanoparticles/TiO2 nanotubes electrode: a plasmonic strategy for label-free and amplified photoelectrochemical immunoassay. Anal Chem 88:5626–5630

    Article  CAS  Google Scholar 

  26. Song K, Ding C, Zhang B, Chang H, Zhao Z, Wei W, Wang J (2018) Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like 3D architecture prepared from graphene oxide and MoS2. Microchim Acta 185:310

    Article  Google Scholar 

  27. Wang Y, Hong J, Zhang W, Xu R (2013) Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization. Catal Sci Technol 3:1703–1711

    Article  CAS  Google Scholar 

  28. Truta L, Moreira F, Sales M (2018) A dye-sensitized solar cell acting as the electrical reading box of an immunosensor: application to CEA determination. Biosens Bioelectron 107:94–102

    Article  CAS  Google Scholar 

  29. Zhao M, Fan G, Chen J, Shi J, Zhu J (2015) Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect. Anal Chem 87:12340–12347

    Article  CAS  Google Scholar 

  30. Fan G, Shi X, Zhang J, Zhu J (2016) Cathode photoelectrochemical immunosensing platform integrating photocathode with photoanode. Anal Chem 88:10352–10356

    Article  CAS  Google Scholar 

  31. Zhang B, Meng H, Wang X, Li J, Chang H, Wei W Fe3+ doped ZnO-ag photocatalyst for photoelectrochemical sensing platform of ultrasensitive Hg2+ detection using exonuclease III-assisted target recycling and DNAzyme-catalyzed amplification. Sensor. Actuat. B-Chem 255:2531–2537

  32. Lu D, Wang H, Zhao X, Kondamareddy K, Ding J, Li C, Fang P (2017) Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustain Chem Eng 5:1436–1445

    Article  CAS  Google Scholar 

  33. Ye L, Wang D, Chen S (2016) Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl Mater Interfaces 8:5280–5289

    Article  CAS  Google Scholar 

  34. Huang Y, Wen Y, Baryeh K, Takalkar S, Lund M, Zhang X, Liu G (2017) Lateral flow assay for carbohydrate antigen 19–9 in whole blood by using magnetized carbon nanotubes. Microchim Acta 184:4287–4294

    Article  CAS  Google Scholar 

  35. Nie Y, Yang M, Ding Y (2018) Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Microchim Acta 185:331

    Article  Google Scholar 

  36. Gao J, Jia M, Xu Y, Zheng J, Shao N, Zhao M (2018) Prereduction-promoted enhanced growth of silver nanoparticles for ultrasensitive colorimetric detection of alkaline phosphatase and carbohydrate antigen 125. Talanta 189:129–136

    Article  CAS  Google Scholar 

  37. Zheng Y, Zhao L, Ma Z (2018) pH responsive label-assisted click chemistry triggered sensitivity amplification for ultrasensitive electrochemical detection of carbohydrate antigen 24-2. Biosens Bioelectron 115:30–36

    Article  CAS  Google Scholar 

  38. Khoshroo A, Mazloum-Ardakani M, Forat-Yazdi M (2018) Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sensor. Actuat. B-Chem 255:580–587

    Article  CAS  Google Scholar 

  39. Wang R, Feng J, Liu W, Jiang L, Wang A (2017) A novel label-free electrochemical immunosensor based on the enhanced catalytic currents of oxygen reduction by AuAg hollow nanocrystals for detecting carbohydrate antigen 199. Biosens Bioelectron 96:152–158

    Article  CAS  Google Scholar 

  40. Ke H, Zhang X, Huang C, Jia N (2018) Electrochemiluminescence evaluation for carbohydrate antigen 15-3 based on the dual-amplification of ferrocene derivative and Pt/BSA core/shell nanospheres. Biosens Bioelectron 103:62–68

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant No. 21605111) and Natural Science Foundation of Shanxi Province (No. 201601D021037 and 201601D011079) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Song, K., Meng, H. et al. Amplified photoelectrochemical immunoassay for the tumor marker carbohydrate antigen 724 based on dye sensitization of the semiconductor composite C3N4-MoS2. Microchim Acta 185, 530 (2018). https://doi.org/10.1007/s00604-018-3054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3054-5

Keywords

Navigation