Skip to main content

Advertisement

Log in

Sol-gel synthesis of cubic titanium dioxide nanoparticle using poly(ethylene glycol) as a capping agent: voltammetric simultaneous determination of uric acid and guanine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles (NPs) were synthesized by a sol-gel method from hexafluorotitanic acid using poly(ethylene glycol) as a capping agent. The crystal structure and morphology of the NPs were characterized by X-ray diffraction, FESEM, and TEM. The NPs were used to modify a graphite paste electrode for simultaneous determination of uric acid (UA) and guanine (GU). The effect of calcination temperature on crystal structure and electrocatalytic activity was investigated. The electrochemical responses to UA and GU at bare GP, TiO2–350/GP, and TiO2–600/GP electrodes were compared. The DPV oxidation peaks of UA and GU were found to be strongest at around 304 and 673 mV, respectively, against Ag/AgCl reference electrode, and this are well separated for effective simultaneous determination. UA and GU can be simultaneously determined by this method. Response is linear within the range 0.1–500 μM and 0.1–40 μM for UA and GU, respectively. The detection limits are 70 nM for UA and 50 nM for GU (at an S/N  ratio of 3). The TiO2–600/GP electrode showed excellent analytical performance when analyzing spiked urine and serum samples.

A graphical representation of cubic TiO2 nanoparticle formation during hydrolysis through sol-gel process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li H, Wang X, Yu Z (2014) Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode. J Solid State Electrochem 18:105–113

    Article  CAS  Google Scholar 

  2. Niu LM, Lian KQ, Shi HM, Wu YB, Kang WJ, Bi SY (2013) Characterization of an ultrasensitive biosensor based on a nano-Au/DNA/nano-Au/poly(SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine, and adenine. Sens Actuators B Chem 178:10–18

    Article  CAS  Google Scholar 

  3. Palecek E (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188:656–657

    Article  CAS  Google Scholar 

  4. Wang J, Cai X, Rivas G, Shiraishi H, Farias PAM, Dontha N (1996) DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus. Anal Chem 68:2629–2634

    Article  CAS  Google Scholar 

  5. Wang HS, Ju HX, Chen HY (2001) Voltammetric behavior and detection of DNA at electrochemically pretreated glassy carbon electrode. Electroanalysis 13:1105–1109

    Article  CAS  Google Scholar 

  6. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  CAS  Google Scholar 

  7. Liu X, Zhang L, Wei S, Chen S, Ou X, Lu Q (2014) Overoxidized polyimidazole/ graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron 57:232–238

    Article  CAS  Google Scholar 

  8. Ling MN, Kao QL, Hong MS, Yi BW, Wei JK, Si YB (2013) Characterization of an ultrasensitive biosensor based on a nano-au/DNA/nano-au/poly(SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine, and adenine. Sens Actuators B Chem 178:10

    Article  Google Scholar 

  9. Majid A, Navid G, Mohammad AZ (2016) A new micro platform based on titanium dioxide Nano fibers/graphene oxide Nano sheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine. Biosens Bioelectron 77:837

    Article  Google Scholar 

  10. Zhao Y, Yan X, Kang Z, Lin P, Fang X, Lei Y, Ma S, Zhang Y (2013) Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Microchim Acta 180:759–766

    Article  CAS  Google Scholar 

  11. Hongying L, Xueliang W, Zhangyu Y (2014) Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano ag hybridized film-modified electrode. J Solid State Electrochem 18:105

    Article  Google Scholar 

  12. Temerk Y, Ibrahim H (2016) A new sensor based on in doped CeO2nanoparticles modified glassycarbon paste electrode for sensitive determination of uric acid in biological fluids. Sens Actuators B Chem 224:868–877

    Article  CAS  Google Scholar 

  13. Arvanda M, Mazhabi RM, Niazi A (2013) Simultaneous determination of guanine, adenine and thymine using a modified carbon paste electrode by TiO2 nanoparticles-magnesium(II) doped natrolite zeolite. Electrochim Acta 89:669–679

    Article  Google Scholar 

  14. Wei Y, Luo L, Ding Y, Liu X, Chu Y (2013) A glassy carbon electrode modified with poly(eriochrome black T) for sensitive determination of adenine and guanine. Microchim Acta 180:887–893

    Article  CAS  Google Scholar 

  15. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008

    Article  CAS  Google Scholar 

  16. Ensafi AA, Jafari-Asl M, Rezaei B, Allafchian AR (2013) Simultaneous determination of guanine and adenine in DNA based on NiFe2O4 magnetic nanoparticles decorated MWCNTs as a novel electrochemical sensor using adsorptive stripping voltammetry. Sens Actuators B Chem 177:634–642

    Article  CAS  Google Scholar 

  17. Jesny S, Menon S, Kumar KG (2016) Simultaneous determination of guanine and adenine in the presence of uric acid by a poly(Para toluene sulfonic acid) mediated electrochemical sensor in alkaline medium. RSC Adv 6:75741–75748

    Article  CAS  Google Scholar 

  18. Mirkhalaf F, Tammeveskic K, Schiffrin DJ (2009) Electrochemical reduction of oxygen on nanoparticulate gold electrodeposited on a molecular template. Phys Chem Chem Phys 11:3463–3471

    Article  CAS  Google Scholar 

  19. Biswas S, Das R, Basu M, Bandyopadhyay R, Pramanik P (2016) Synthesis of Carbon Nanoparticle Embedded Graphene for Sensitive and Selective Determination of Dopamine and Ascorbic acid in Biological Fluids. RSC Adv 6:100723–100731

    Article  CAS  Google Scholar 

  20. Biswas S, Chakraborty D, Das R, Bandyopadhyay R, Pramanik P (2015) A simple synthesis of nitrogen doped porous graphitic carbon: electrochemical determination of paracetamol in presence of ascorbic acid and p-aminophenol. Anal Chim Acta 890:98–107

    Article  CAS  Google Scholar 

  21. Biswas S, Das R, Chakraborty D, Bandhyopadhyay R, Pramanik P (2015) Synthesis of nitrogen doped multilayered graphene flakes: selective non-enzymatic electrochemical determination of dopamine and uric acid in presence of ascorbic acid. Electroanalysis 27:1253–1261

    Article  CAS  Google Scholar 

  22. Xiliang L, Aoife M, Anthony JK, Malcolm RS (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319

    Article  Google Scholar 

  23. Tillotson MJ, Brett PM, Bennett RA, Crespo RG (2015) Adsorption of organic molecules at the TiO2(110) surface: the effect of van der Waals interactions. Surf Sci 632:142–153

    Article  CAS  Google Scholar 

  24. Nowotny J, Bak T, Nowotny MK, Sheppard LR (2006) TiO2 surface active sites for water splitting. J Phys Chem B 110:18492–18495

    Article  CAS  Google Scholar 

  25. Chen J, Wang H, Wei X, Zhu L (2012) Characterization, properties and catalytic application of TiO2 nanotubes prepared by ultrasonic-assisted sol-hydrothermal method. Mater Res Bull 47:3747–3752

    Article  CAS  Google Scholar 

  26. Liu G, Hoivik N, Wang K (2013) Small diameter TiO2 nanotubes with enhanced photoresponsivity. Electrochem Commun 28:107–110

    Article  CAS  Google Scholar 

  27. Deorsola FA, Vallauri ED (2008) Synthesis of TiO2 nanoparticles through the gel combustion process. J Mater Sci 43:3274–3278

    Article  CAS  Google Scholar 

  28. Zhang Q, Gao L (2003) Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from rutile TiO2. Langmuir 19:967–971

    Article  CAS  Google Scholar 

  29. Zheng W, Liu X, Yan Z, Zhu L (2009) Ionic liquid-assisted synthesis of large scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano 3:115–122

    Article  CAS  Google Scholar 

  30. Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ (2009) Solvothermal synthesis and Photoreactivity of Anatase TiO2 Nanosheets with dominant {001} facets. J Am Chem Soc 131:4078–4083

    Article  CAS  Google Scholar 

  31. Samya ES, Fatma M, Marwa S, Osama AF (2014) Synthesis, characterization and application of TiO2nanopowders as special paper coating pigment. Appl Nanosci 4:305

    Article  Google Scholar 

  32. Xingtao J, Wen H, Xudong Z, Hongshi Z, Zhengmao L, Yingjun F (2007) Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores. Nanotechnology 18:075602

    Article  Google Scholar 

  33. René M, Luc B, Michel T (1980) TiO2 (B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater Res Bull 15:1129

    Article  Google Scholar 

  34. Pradhan S, Biswas S, Das DK, Bhar R, Bandyopadhyay R, Pramanik P (2018) An efficient electrode for simultaneous determination of guanine and adenine using nano-sized lead telluride with graphene. New J Chem 42:564–573

    Article  CAS  Google Scholar 

  35. Batchelor-McAuley C, Ktelhçn E, Barnes EO, Compton RG, Laborda E, Molina A (2015) Recent advances in voltammetry. Chemistry Open 4:224

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank UGC DAE Consortium, Kolkata centre and CRNN, Calcutta University for providing XRD, FESEM and TEM imaging facilities. One of the authors (S. Pradhan) is thankful to Council of Scientific and Industrial Research (CSIR) India for a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchanan Pramanik.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

Structure of uric acid and guanine, particle size distribution of TiO2–600, Variation of peak potential vs. logarithm of scan rate plot at TiO2–600/GP electrode, Repeatability of TiO2–600/GP electrode, Influence of foreign substances (metal ions and electroactive biomolecules) to the DPV voltammetric peak current of studied molecules at TiO2–600/GP electrode, UV-Vis absorbance spectra of TiO2–600 and TiO2–350 Nps, Flat band model for electron transfer from molecule to TiO2–600/GP electrode surface. (DOCX 1.73 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Pradhan, S., Naskar, H. et al. Sol-gel synthesis of cubic titanium dioxide nanoparticle using poly(ethylene glycol) as a capping agent: voltammetric simultaneous determination of uric acid and guanine. Microchim Acta 185, 513 (2018). https://doi.org/10.1007/s00604-018-3042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3042-9

Keywords

Navigation