Skip to main content
Log in

Fluorometric aptasensing of the neonicotinoid insecticide acetamiprid by using multiple complementary strands and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric aptamer-based assay was developed for ultrasensitive and selective determination of the neonicotinoid insecticide acetamiprid. The method is based on the use of an aptamer against acetamiprid, multiple complementary strands (CSs), and gold nanoparticles (AuNPs). It is found that by using different CSs, the sensitivity and selectivity of the method is enhanced. On addition of acetamiprid to the aptamer, they will bind to each other and CS1-fluorescein (FAM)-labeled CS2 (as a dsDNA) will be formed. The FAM-labeled dsDNA does not bind to the AuNPs (as a strong quencher) and remains free in the environment, resulting in a strong fluorescence intensity. Without the introduction of acetamiprid, FAM-labeled CS2 binds to AuNPs directly and indirectly through hybridization with CS3 immobilized on the surface of the AuNPs. So, the fluorescence intensity of FAM-labeled CS2 is significantly quenched by AuNPs. The method can detect acetamiprid in the 5 to 50 nM concentration range with a 2.8 nM detection limit. The assay was applied to the determination of acetamiprid in spiked tap water where is gave recoveries that ranged between 95.4% and 94.4%.

(a) In the presence of acetamiprid, aptamer interacts with acetamiprid. The formation of aptamer/acetamiprid causes pairing of complementary strand 1 with FAM-labeled complementary strand, leading to a strong fluorescence intensity. (b) In the absence of acetamiprid, aptamer is hybridized with complementary strand 1. Thus, a very weak fluorescence signal is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Terayama H, Endo H, Tsukamoto H, Matsumoto K, Umezu M, Kanazawa T, Ito M, Sato T, Naito M, Kawakami S, Fujino Y, Tatemichi M, Sakabe K (2016) Acetamiprid accumulates in different amounts in murine brain regions. Int J Environ Res Public Health 13(10):937. https://doi.org/10.3390/ijerph13100937

    Article  CAS  PubMed Central  Google Scholar 

  2. Sano K, Isobe T, Yang J, Win-Shwe T-T, Yoshikane M, Nakayama SF, Kawashima T, Suzuki G, Hashimoto S, Nohara K, Tohyama C, Maekawa F (2016) In utero and lactational exposure to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice. Front Neurosci 10:228. https://doi.org/10.3389/fnins.2016.00228

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tian Y, Wang Y, Sheng Z, Li T, Li X (2016) A colorimetric detection method of pesticide acetamiprid by fine-tuning aptamer length. Anal Biochem 513:87–92. https://doi.org/10.1016/j.ab.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  4. Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2002) Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by high-performance liquid chromatography with diode-array detection. J Agric Food Chem 50(16):4464–4467

    Article  CAS  PubMed  Google Scholar 

  5. Vichapong J, Burakham R, Srijaranai S (2013) Vortex-assisted surfactant-enhanced-emulsification liquid–liquid microextraction with solidification of floating organic droplet combined with HPLC for the determination of neonicotinoid pesticides. Talanta 117:221–228

    Article  CAS  PubMed  Google Scholar 

  6. Xie W, Han C, Qian Y, Ding H, Chen X, Xi J (2011) Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography–tandem mass spectrometry. J Chromatogr A 1218(28):4426–4433

    Article  CAS  PubMed  Google Scholar 

  7. Zhang B, Pan X, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection. Talanta 75(4):1055–1060

    Article  CAS  PubMed  Google Scholar 

  8. Radišić M, Grujić S, Vasiljević T, Laušević M (2009) Determination of selected pesticides in fruit juices by matrix solid-phase dispersion and liquid chromatography–tandem mass spectrometry. Food Chem 113(2):712–719

    Article  CAS  Google Scholar 

  9. Liu S, Zheng Z, Wei F, Ren Y, Gui W, Wu H, Zhu G (2010) Simultaneous determination of seven neonicotinoid pesticide residues in food by ultraperformance liquid chromatography tandem mass spectrometry. J Agric Food Chem 58(6):3271–3278

    Article  CAS  PubMed  Google Scholar 

  10. Mateu-Sanchez M, Moreno M, Arrebola FJ, Vidal JLM (2003) Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry. Anal Sci 19(5):701–704

    Article  CAS  PubMed  Google Scholar 

  11. Wanatabe S, Ito S, Kamata Y, Omoda N, Yamazaki T, Munakata H, Kaneko T, Yuasa Y (2001) Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Anal Chim Acta 427(2):211–219

    Article  CAS  Google Scholar 

  12. Wang C, Chen D, Wang Q, Wang Q (2016) Aptamer-based resonance light scattering for sensitive detection of acetamiprid. Anal Sci 32(7):757–762. https://doi.org/10.2116/analsci.32.757

    Article  CAS  PubMed  Google Scholar 

  13. Yang Z, Qian J, Yang X, Jiang D, Du X, Wang K, Mao H, Wang K (2015) A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens Bioelectron 65:39–46

    Article  CAS  PubMed  Google Scholar 

  14. He J, Liu Y, Fan M, Liu X (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59(5):1582–1586

    Article  CAS  PubMed  Google Scholar 

  15. Poturnayova A, Castillo G, Subjakova V, Tatarko M, Snejdarkova M, Hianik T (2017) Optimization of cytochrome c detection by acoustic and electrochemical methods based on aptamer sensors. Sensors Actuators B Chem 238:817–827. https://doi.org/10.1016/j.snb.2016.07.113

    Article  CAS  Google Scholar 

  16. Zhang Z, Guo C, Zhang S, He L, Wang M, Peng D, Tian J, Fang S (2017) Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor. Biosensors and Bioelectronics 89. Part 2:735–742. https://doi.org/10.1016/j.bios.2016.11.019

    Article  CAS  Google Scholar 

  17. Qin J, Cui X, Wu P, Jiang Z, Chen Y, Yang R, Hu Q, Sun Y, Zhao S (2017) Fluorescent sensor assay for β-lactamase in milk based on a combination of aptamer and graphene oxide. Food Control 73, Part B:726-733. https://doi.org/10.1016/j.foodcont.2016.09.023

  18. Calzada V, Moreno M, Newton J, González J, Fernández M, Pablo Gambini J, Ibarra M, Chabalgoity A, Deutscher S, Quinn T, Cabral P, Cerecetto H Development of new PTK7-targeting aptamer-fluorescent and –radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2016.12.026

  19. Taghdisi SM, Danesh NM, Ramezani M, Abnous K (2016) A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens Bioelectron 85:509–514. https://doi.org/10.1016/j.bios.2016.05.048

    Article  CAS  PubMed  Google Scholar 

  20. Seow N, Tan YN, Yung L-YL SX (2015) DNA-Directed Assembly of Nanogold Dimers: A Unique Dynamic Light Scattering Sensing Probe for Transcription Factor Detection. Sci Rep 5:18293. https://doi.org/10.1038/srep18293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carnovale C, Bryant G, Shukla R, Bansal V (2016) Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity. Prog Mater Sci 83:152–190

    Article  CAS  Google Scholar 

  22. Zhang P, Liu H, Li X, Ma S, Men S, Wei H, Cui J, Wang H (2017) A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters. Biosens Bioelectron 87:1044–1049

    Article  CAS  PubMed  Google Scholar 

  23. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964

    Article  CAS  Google Scholar 

  24. Sun J, Guo A, Zhang Z, Guo L, Xie J (2011) A conjugated aptamer-gold nanoparticle fluorescent probe for highly sensitive detection of rHuEPO-α. Sensors 11(11):10490–10501. https://doi.org/10.3390/s111110490

    Article  CAS  PubMed  Google Scholar 

  25. Gopinath SC, Lakshmipriya T, Awazu K (2014) Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron 51:115–123

    Article  CAS  PubMed  Google Scholar 

  26. Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM (2016) A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles. Sensors Actuators B Chem 222:1–7

    Article  CAS  Google Scholar 

  27. Mao Y, Fan T, Gysbers R, Tan Y, Liu F, Lin S, Jiang Y (2017) A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles. Talanta 168:279–285. https://doi.org/10.1016/j.talanta.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  28. Pohanish RP (2014) Sittig's Handbook of Pesticides and Agricultural Chemicals: Second Edition. Sittig's Handbook of Pesticides and Agricultural Chemicals: Second Edition. https://doi.org/10.1016/C2012-0-02568-9

  29. Rapini R, Cincinelli A, Marrazza G (2016) Acetamiprid multidetection by disposable electrochemical DNA aptasensor. Talanta 161:15–21

    Article  CAS  PubMed  Google Scholar 

  30. Taghdisi SM, Danesh NM, Ramezani M, Abnous K (2017) Electrochemical aptamer based assay for the neonicotinoid insecticide acetamiprid based on the use of an unmodified gold electrode. Microchim Acta 184(2):499–505

    Article  CAS  Google Scholar 

  31. Hu W, Chen Q, Li H, Ouyang Q, Zhao J (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH 2-NaYF 4: Yb, Ho@ SiO 2 and Au nanoparticles. Biosens Bioelectron 80:398–404

    Article  CAS  PubMed  Google Scholar 

  32. Xu Q, Du S, Li H, Hu XY (2011) Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Microchim Acta 173(3–4):323–329

    Article  CAS  Google Scholar 

  33. Abnous K, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Taghdisi SM (2017) Aptamer based fluorometric acetamiprid assay using three kinds of nanoparticles for powerful signal amplification. Microchim Acta 184(1):81–90

    Article  CAS  Google Scholar 

  34. Zhang X, Mobley N, Zhang J, Zheng X, Lu L, Ragin O, Smith CJ (2010) Analysis of agricultural residues on tea using d-SPE sample preparation with GC-NCI-MS and UHPLC-MS/MS. J Agric Food Chem 58(22):11553–11560

    Article  CAS  PubMed  Google Scholar 

  35. Ferrer I, Thurman EM, Fernández-Alba AR (2005) Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS. Anal Chem 77(9):2818–2825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support of this study was provided by Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalil Abnous or Seyed Mohammad Taghdisi.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahreyni, A., Yazdian-Robati, R., Ramezani, M. et al. Fluorometric aptasensing of the neonicotinoid insecticide acetamiprid by using multiple complementary strands and gold nanoparticles. Microchim Acta 185, 272 (2018). https://doi.org/10.1007/s00604-018-2805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2805-7

Keywords

Navigation