Skip to main content
Log in

Nanostructured platform for the sensitive determination of paraoxon by using an electrode modified with a film of graphite-immobilized bismuth

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a graphite immobilized bismuth film electrode with enhanced sensitivity for the organophosphorus pesticide paraoxon. The film was formed by ex-situ electroplating of bismuth onto the large surface of a glassy carbon electrode modified with graphite nanopowder (Bi/Gr/GCE). The modified GCE was characterized by chronoamperometry using p-nitrophenol as a model nitro compound. The modification of the GCE results in an increase of the electroactive area (to 27.7 mm2) and of the electrocatalytic activity (the catalytic rate constant being 4140 L·mol−1·s−1). This results in an enhancement of the current for the electroreduction of paraoxon by a factor of 4.3 (compared to a plain GCE). The modified GCE was applied to the sensitive determination of paraoxon by differential pulse voltammetry. At a typical working potential of −0.45 V vs. Ag/AgCl, the LOD is 2 nmol·L−1 of paraoxon, which is comparable to the LOD of some cholinesterases-based electrochemical sensors and is lower than the LOD of the organophosphorus hydrolase-based electrochemical sensors for paraoxon. In addition, the new GCE is more stable than enzyme-based sensors, and it can be renewed.

Schematic of a glassy carbon electrode (GCE) modified by renewable Bi film deposited ex situ. Graphite nanopowder (Gr) was incorporated in laponite as intermediate layer to form a sandwich-type structure (Bi/Gr/GCE). The Bi/Gr/GCE was applied for the sensitive paraoxon quantification with an LOD of 2 nmol L−1. Symbols: 1-glassy carbon electrode; 2-graphite nanopowder; 3-Bi-film. GCE: glassy carbon electrode; Bi/GCE: Bi-film modified glassy carbon electrode; Gr/GCE: graphite nanopowder modified glassy carbon electrode; Bi/Gr/GCE: graphite immobilized Bi-film electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stoytcheva M, Zlatev R (2011) Organophosphorus pesticides analysis. In: Stoytcheva M (ed) Pesticides in the modern world-trends in pesticides analysis. InTech, Croatia, pp 143–164

    Google Scholar 

  2. Stoytcheva M (2010) Enzyme vs. bacterial electrochemical sensors for organophosphorus pesticides quantification. In: Somerset V (ed) Intelligent and Biosensors. InTech, Croatia, pp 219–230

    Google Scholar 

  3. Stoytcheva M, Zlatev R, Velkova Z, Valdez B (2011) Organophosphorus pesticides determination by electrochemical biosensors. In: Stoytcheva M (ed) Pesticides-strategies for pesticides analysis. InTech, Croatia, pp 359–372

    Google Scholar 

  4. Stoytcheva M, Zlatev R (2014) Recent trends in the development of electrochemical biosensors for organophosphorus pesticides determination. In: Aliofkhazraei M (ed) Modern electrochemical methods in nano, surface and corrosion science. InTech, Croatia, pp 83–97

    Google Scholar 

  5. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183:2063–2083

    Article  CAS  Google Scholar 

  6. Garrido EM, Delerue-Matos C, Lima JLFC, Brett AMO (2004) Electrochemical methods in pesticides control. Anal Lett 37:1755–1791

    Article  CAS  Google Scholar 

  7. Gajdar J, Horakova E, Barek J, Fischer J, Vyskocil V (2016) Recent applications of mercury electrodes for monitoring of pesticides: a critical review. Electroanalysis 28:2659–2671

    Article  CAS  Google Scholar 

  8. Wang H, Su Y, Kim H, Yong D, Wang L, Han X (2015) A highly efficient ZrO2 nanoparticle based electrochemical sensor for the detection of organophosphorus pesticides. Chin J Chem 33:1135–1139

    Article  CAS  Google Scholar 

  9. Anandhakumar S, Dhanalakshmi K, Mathiyarasu J (2014) Non-enzymatic organophosphorus pesticide detection using gold atomic cluster modified electrode. Electrochem Commun 38:15–18

    Article  CAS  Google Scholar 

  10. Li C, Wang C, Ma Y, Bao W, Hu S (2005) A novel amperometric sensor and chromatographic detector for determination of parathion. Anal Bioanal Chem 381:1049–1055

    Article  CAS  Google Scholar 

  11. Ma JC, Zhang WD (2011) Gold nanoparticle-coated multiwall carbon nanotube-modified electrode for electrochemical determination of methyl parathion. Microchim Acta 175:309–314

    Article  CAS  Google Scholar 

  12. Huang B, Zhang WD, Chen CH, Yu YX (2010) Electrochemical determination of methyl parathion at a Pd/MWCNTs-modified electrode. Microchim Acta 171:57–62

    Article  CAS  Google Scholar 

  13. Musameh M, Notivoli MR, Hickey M, Huynh CP, Hawkins SC, Yousef JM, Kyratzis IL (2013) Carbon nanotube-web modified electrodes for ultrasensitive detection of organophosphate pesticides. Electrochim Acta 101:209–215

    Article  CAS  Google Scholar 

  14. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  Google Scholar 

  15. Manilo MV, Lebovka NI, Barany S (2015) Stability of multi-walled carbon nanotube+laponite hybrid particles in aqueous suspensions. Colloids and Surfaces A: Physicochem Eng Aspects 481:199–206

    Article  CAS  Google Scholar 

  16. Loginov M, Lebovka N, Vorobiev E (2014) Hybrid multiwalled carbon nanotube-laponite sorbent for removal of methylene blue from aqueous solutions, J. Colloid Interface Sci 431:241–249

    Article  CAS  Google Scholar 

  17. Cosnier S, Lambert F, Stoytcheva M (2000) A composite clay glucose biosensor based on an electrically connected HRP. Electroanalysis 12:356–360

    Article  CAS  Google Scholar 

  18. Du D, Ye X, Zhang J, Liu D (2008) Cathodic electrochemical analysis of methyl parathion at bismuth film modified glassy carbon electrode. Electrochim Acta 53:4478–4484

    Article  CAS  Google Scholar 

  19. Hutton E.A, Ogorevc B, Smyth MR (2004) Cathodic electrochemical detection of nitrophenols at a bismuth film electrode for use in flow analysis. Electroanalysis 16:1616–1621

  20. Liu ZN, Du JG, Qiu CC, Huang LH, Ma HY, Shen DZ, Ding Y (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11:1365–1368

    Article  CAS  Google Scholar 

  21. Niesner R, Heintz A (2000) Diffusion coefficients of aromatics in aqueous solution. J Chem Eng Data 45:1121–1124

    Article  CAS  Google Scholar 

  22. Zuman P, Fijalek Z, Dumanovic D, Suznjevic D (1992) Polarographic and electrochemical studies of some aromatic and heterocyclic nitro compounds, part I: general mechanistic aspects. Electroanalysis 4:783–794

    Article  CAS  Google Scholar 

  23. Deng P, Xu Z, Feng Y, Li J (2012) Electrocatalytic reduction and determination of p-nitrophenol on acetylene black paste electrode coated with salicylaldehyde-modified chitosan. Sensors Actuators B Chem 168:381–389

    Article  CAS  Google Scholar 

  24. El Mhammedi MA, Achak M, Bakasse M, Chtaini A (2009) Electrochemical determination of paranitrophenol at apatite-modified carbon paste electrode: application in river water samples. J Hazard Mater 163:323–328

    Article  CAS  Google Scholar 

  25. De Souza D, Mascaro LH, Fatibello-Filho O (2011) A comparative electrochemical behaviour study and analytical detection of the p-nitrophenol using silver solid amalgam, mercury, and silver electrodes. Int J Anal Chem. doi:10.1155/2011/726462

    Google Scholar 

  26. Noguer T, Leca B, Jeanty G, Marty JL (1999) Biosensors based on enzyme inhibition: detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides. Field Anal Chem Technol 3:171–178

    Article  CAS  Google Scholar 

  27. Jha N, Ramaprabhu S (2010) Carbon nanotube-polymer based nanocomposite as electrode material for the detection of paraoxon. J Nanosci Nanotechnol 10:2798–2802

    Article  CAS  Google Scholar 

  28. Arduini F, Neagu D, Scognamiglio V, Patarino S, Moscone D, Palleschi G (2015) Automatable flow system for paraoxon detection with an embedded screen-printed electrode tailored with butyrylcholinesterase and prussian blue nanoparticles. Chem Aust 3:129–145

    CAS  Google Scholar 

  29. Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculo E, Simonian A (2010) Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf B: Biointerfaces 77:69–74

    Article  CAS  Google Scholar 

  30. Chough SH, Mulchandani A, Mulchandani P, Chen W, Wang J, Rogers KR (2002) Organophosphorus hydrolase-based amperometric sensor: modulation of sensitivity and substrate selectivity. Electroanalysis 14:274–276

    Article  Google Scholar 

  31. Lee JH, Park JY, Min K, Cha HJ, Choi SS, Yoo YJ (2010) A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron 25:1566–1570

    Article  CAS  Google Scholar 

  32. Deo RP, Wang J, Block I, Mulchandani A, Joshic KA, Trojanowicz M, Scholz F, Chen W, Lin Y (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530:185–189

    Article  CAS  Google Scholar 

  33. Laothanachareon T, Champreda V, Sritongkham P, Somasundrum M, Surareungchai W (2008) Cross-linked enzyme crystals of organophosphate hydrolase for electrochemical detection of organophosphorus compounds. World J Microbiol Biotechnol 24:3049–3055

    Article  CAS  Google Scholar 

  34. Wang J, Chen L, Mulchandani A, Mulchandani P, Chen W (1999) Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis 11:866–869

    Article  CAS  Google Scholar 

  35. Alhassan SM, Qutubuddin S, Schiraldi DA (2012) Graphene arrested in laponite-water colloidal glass. Langmuir 28:4009–4015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stoytcheva.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 60.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoytcheva, M., Zlatev, R., Montero, G. et al. Nanostructured platform for the sensitive determination of paraoxon by using an electrode modified with a film of graphite-immobilized bismuth. Microchim Acta 184, 2707–2714 (2017). https://doi.org/10.1007/s00604-017-2282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2282-4

Keywords

Navigation