Skip to main content

Advertisement

Log in

Ratiometric arginine assay based on FRET between CdTe quantum dots and Cresyl violet

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on the design of a new Förster resonance energy transfer (FRET) based ratiometric nanoprobe for the determination of arginine. The method is based on the inhibition of the efficiency of FRET in assemblies formed between CdTe quantum dots capped with mercaptopropionic acid (QD-MPA) acting as energy donor, and the dye Cresyl Violet (CV) that acts as an energy acceptor at pH 8. Addition of arginine causes a displacement of the CV by arginine on the surface of the QD/MPA. Hence, the FRET between QD/MPA and CV is interrupted and fluorescence emission of the donor (QD/MPA) is restored. Arginine selectively binds to the QD/MPA via electrostatic and hydrogen bonding interactions between guanidinium and carboxylate. Under optimum conditions, the ratio of the fluorescence emissions peaking at 575 and 620 nm (under 400 nm excitation) is linear in the 1 to 30 μM arginine concentration range, and the detection limit is 0.51 μM. The nanoprobe displays good selectivity over 14 other amino acids, many metal ions, glucose, and ascorbic, tartaric and citric acids. The fluorescent nanoprobe was successfully applied to the determination of arginine in pure and spiked real samples and gave good recoveries. Its good selectivity, sensitivity, low-cost and rapidity make the QD-dye assembly a suitable nanoprobe for the quantitation of arginine.

Schematic of a FRET ratiometric nanoprobe for arginine. It is based on quantum dots acting as energy donors and Cresyl Violet acting as energy acceptor. The FRET process is interrupted by the addition of arginine which selectively interacts with carboxy groups via a guanidinium-carboxylate salt bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Medintz I, Hildebrandt N (2014) FRET-Förster resonance energy transfer: from theory to applications. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 475–583

    Google Scholar 

  2. Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25

    Article  CAS  Google Scholar 

  3. Kim JY, Voznyy O, Zhitomirsky D, Sargent EH (2013) 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv Mater 25:4986–5010

    Article  CAS  Google Scholar 

  4. Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem 83:8826–8837

    Article  CAS  Google Scholar 

  5. Chen G, Song F, Xiong X, Peng X (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52:11228–11245

    Article  CAS  Google Scholar 

  6. Kim GB, Kim YP (2012) Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2:127–138

    Article  CAS  Google Scholar 

  7. Dezhurov SV, Volkova IY, Wakstein MS (2011) FRET-based biosensor for oleic acid in nanomolar range with quantum dots as an energy donor. Bioconjug Chem 22:338–345

    Article  CAS  Google Scholar 

  8. Algar WR, Kim H, Medintz IL, Hildebrandt N (2014) Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: investigations and applications. Coord Chem Rev 263-264:65–85

    Article  CAS  Google Scholar 

  9. Ge S, Lu J, Yan M, Yu F, Yu J, Sun X (2011) Fluorescence resonance energy transfer sensor between quantum dot donors and neutral red acceptors and its detection of BSA in micelles. Dyes Pigments 91:304–308

    Article  CAS  Google Scholar 

  10. Sha J, Tong C, Zhang H, Feng L, Liu B, Lü C (2015) CdTe QDs functionalized mesoporous silica nanoparticles loaded with conjugated polymers: a facile sensing platform for cupric (II) ion detection in water through FRET. Dyes Pigments 113:102–109

    Article  CAS  Google Scholar 

  11. Mobarraz M, Ganjali MR, Chaichi MJ, Norouzi P (2012) Functionalized ZnS quantum dots as luminescent probes for detection of amino acids. Spectrochim Acta-Part A Mol Biomol Spectrosc 96:801–804

    Article  CAS  Google Scholar 

  12. Li H, Liang X, Feng L, Liu Y, Wang H (2008) A simple and fast method for arginine determination in grape juice. Food Drug Anal 16:53–58

    CAS  Google Scholar 

  13. De Orduña RM (2001) Quantitative determination of L-arginine by enzymatic end-point analysis. J Agric Food Chem 49:549–552

    Article  Google Scholar 

  14. De Orduña RM, Liu SQ, Patchett ML, Pilone GJ (2000) Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. FEMS Microbiol Lett 183:31–35

    Article  Google Scholar 

  15. Sheliakina M, Arkhypova V, Soldatkin O, Saiapina O, Akata B, Dzyadevych S (2014) Urease-based ISFET biosensor for arginine determination. Talanta 121:18–23

    Article  CAS  Google Scholar 

  16. Wei YK, Yang J (2007) Evanescent wave infrared chemical sensor possessing a sulfonated sensing phase for the selective detection of arginine in biological fluids. Talanta 71:2007–2014

    Article  CAS  Google Scholar 

  17. He L, So VL, Xin JH (2014) A new rhodamine-thiourea/Al3+ complex sensor for the fast visual detection of arginine in aqueous media. Sensors Actuators B Chem 192:496–502

    Article  CAS  Google Scholar 

  18. Huang LF, Guo FQ, Liang YZ, Hu QN, Cheng BM (2003) Rapid simultaneous determination of arginine and methylated arginines in human urine by high-performance liquid chromatography–mass spectrometry. Anal Chim Acta 487:145–153

    Article  CAS  Google Scholar 

  19. Poon C-Y, Li Q, Zhang J, Li Z, Dong C, Lee AW-M, Chan W-H, Li H-W (2016) FRET-based modified grapheme quantum dots for direct trypsin quantification in urine. Anal Chim Acta 917:64–70

    Article  CAS  Google Scholar 

  20. Wu L, Guo Q-S, Liu Y-Q, Sun Q-J (2015) Fluorescence resonance energy transfer-based Ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem 87:5318–5323

    Article  CAS  Google Scholar 

  21. Shanehsaz M, Mohsenifar A, Hasannia S, Pirooznia N, Samaei Y, Shamsipur M (2013) Detection of helicobacter pylori with a nanobiosensor based on fluorescence resonance energy transfer using CdTe quantum dots. Microchim Acta 180:195–202

    Article  CAS  Google Scholar 

  22. Mahdi M, Mansour B, Afshin M (2016) Competitive immunoassay for Ochratoxin a based on FRET from quantum dot-labeled antibody to rhodamine-coated magnetic silica nanoparticles. Microchim Acta 183:3093–3099

    Article  CAS  Google Scholar 

  23. Wang Y, Ma T, Ma S, Liu Y, Tian Y, Wang R, Wang J (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184:203–210

    Article  CAS  Google Scholar 

  24. Zhou R, Wei KY, Zhao JS, Jiang JB (2011) Alternative chiral thiols for preparation of chiral CdS quantum dots covered immediately by achiral thiols. Chem Commun 47:6362–6364

    Article  CAS  Google Scholar 

  25. Oluwatobi O, Daramola OA, Ncapayi V (2014) A facile green synthesis of type II water soluble CdTe/CdS core shell nanoparticles. Mater Lett 133:9–13

    Article  Google Scholar 

  26. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  27. Tirado-Guízar A, Pina-Luis G, Paraguay-Delgado F, Ramírez-Herrera D (2014) Size-dependent enhanced energy transfer from tryptophan to CdSe/mercaptopropionic acid quantum dots: a new fluorescence resonance energy transfer nanosensor. Sci Adv Mater 6:492–499

    Article  Google Scholar 

  28. Zhang X, Ju H, Wang J (2008) Electrochemical sensors. Biosensors and their Biomedical Applications. Elsevier, USA, p 158

    Google Scholar 

  29. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York, p 678

    Book  Google Scholar 

  30. Gómez-Alonso S, Hermosín-Gutiérrez I, García-Romero E (2007) Simultaneous HPLC analysis of biogenic amines, amino acids, and ammonium ion as aminoenone derivatives in wine and beer samples. J Agric Food Chem 55:608–613

    Article  Google Scholar 

  31. Fiechter G, Mayer HK (2011) UPLC analysis of free amino acids in wines: profiling of on-lees aged wines. J Chromatogr B 879:1361–1366

    Article  CAS  Google Scholar 

  32. Mandrioli R, Morganti E, Mercolini L, Kenndler E, Raggi MA (2011) Fast analysis of amino acids in wine by capillary electrophoresis with laser induced fluorescence detection. Electrophoresis 32:2809–2815

    Article  CAS  Google Scholar 

  33. Rawat KA, Kailasa SK (2014) Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchim Acta 181:1917–1929

    Article  CAS  Google Scholar 

  34. Bogner M, Ludewig U (2007) Visualization of arginine influx into plant cells using a specific FRET-sensor. J Fluoresc 17:350–360

    Article  CAS  Google Scholar 

  35. Liang X, Sun J, Chen S, Fan Y (2013) Determination L-arginine from grape juice with Sakaguchi reaction. Adv Mater Res 662:301–304

    Article  Google Scholar 

  36. Pu W, Zhao H, Huang C, Wu L, Xu D (2013) Visual detection of arginine based on the unique guanidine group-induced aggregation of gold nanoparticles. Anal Chim Acta 764:78–83

    Article  CAS  Google Scholar 

  37. Kutlán D, Molnár-Perl I (2003) New aspects of the simultaneous analysis of amino acids and amines as their o-phthaldialdehyde derivatives by high-performance liquid chromatography analysis of wine, beer and vinegar. J Chromatogr A 987:311–322

    Article  Google Scholar 

  38. Lozanov V, Petrov S, Mitev S (2004) Simultaneous analysis of amino acid and biogenic polyamines by high-performance liquid chromatography after pre-column derivatization with N-(9-fluorenylmethoxycarbonyloxy) succinimide. J Chromatogr A 1025:201–208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from Consejo Nacional de Ciencia y Tecnología (CONACyT), México (Project 167139), Tecnológico Nacional de México (TecNM) (Project 5623.15-P) and Supramolecular Chemistry Network (CONACyT, Project 271884). D. Ramírez-Herrera thank CONACyT for a Doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina Pina-Luis.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Herrera, D.E., Tirado-Guízar, A., Paraguay-Delgado, F. et al. Ratiometric arginine assay based on FRET between CdTe quantum dots and Cresyl violet. Microchim Acta 184, 1997–2005 (2017). https://doi.org/10.1007/s00604-017-2205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2205-4

Keywords

Navigation