Skip to main content
Log in

A magnetic CoFe2O4/SiO2 nanocomposite fabricated by the sol-gel method for electrocatalytic oxidation and determination of L-cysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Magnetic CoFe2O4/SiO2 spinel-type nanocomposites have been fabricated by a sol-gel method in the presence of various acids. Their structural, morphological and magnetic properties were characterized by XRD, SEM, TEM, FTIR, VSM and EDX which revealed that they are formed in the presence of all precursors. TEM analysis indicates homogeneous and porous spherical morphology with nanosize grains 10–20 nm in diameter in the presence of salicylic acid. Electrochemical sensor application of nanocrystalline CoFe2O4/SiO2 synthesized by salicylic acid for determination of L-cysteine was investigated using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). DPV indicates that the sensor shows remarkable sensitivity for the determination of L-Cys. The response of a glassy carbon electrode modified with CoFe2O4/SiO2 is linear in the 0.02–425 μM L-Cys concentration range, with a 0.20 μM detection limit (at an S/N ratio of 3). The electrode produces a negligible current response for tryptophan, glutamic acid and citric acid at the working potential applied (+0.748 V vs Ag/AgCl). The electrode is reliable, simple, rapidly prepared, precise, and the method does not require extensive sample treatment.

A CoFe2O4/SiO2 magnetic nanocomposite was synthesized by a sol-gel auto combustion method in the presence of various acids as precursors. A highly sensitive electrochemical sensor was fabricated for determination of trace amount of L-cysteine using a glassy carbon electrode modified with the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hochepied JF, Bonville P, Pileni MP (2000) Nonstoichiometric zinc ferrite Nanocrystals: syntheses and unusual magnetic properties. J Phys Chem B 104:905–912

    Article  CAS  Google Scholar 

  2. Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite Nanocrystallites. J Phys Chem B 104:1141–1145

    Article  CAS  Google Scholar 

  3. Rezlescu E, Sachelarie L, Popa PD, Rezlescu N (2000) Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-me ferrites. IEEE Trans Magn 36(6):3962–3967

    Article  CAS  Google Scholar 

  4. Pramanik NC, Fujii T, Nakanishi M, Takada J (2005) Preparation and magnetic properties of the CoFe2O4 thin films on Si substrate by sol-gel technique. J Mater Sci 40:4169–4172

    Article  CAS  Google Scholar 

  5. Sorescu M, Grabias A, Mihaila DT, Diamandescu L (2001) Comparative study of the crystallization behavior of Fe-Cr-B-Si in bulk and thin film forms. J Mater Synth Process 9:181–185

    Article  CAS  Google Scholar 

  6. Sartale SD, Ganesan V, Lokhande CD (2005) Electrochemical deposition and characterization of CoFe2O4 thin films. Phys Status Solidi A 202:85–94

    Article  CAS  Google Scholar 

  7. Mane RS, Lokhande CD (2000) Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method. J Mater Chem Phys 1:63–67

    Google Scholar 

  8. Abu-Thabit NY, Makhlouf ASH (2015) Recent Advances in Nanocomposite Coatings for Corrosion Protection Applications, In Handbook of Nanoceramic and Nanocomposite Coatings and Materials, Makhlouf ASH, Scharnweber D (Eds). Chapter 24, Elsevier MA, USA, p 515–549

  9. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites, Synthesis, structure, Properties and new application opportunities, Mater Res 12: 1–39

  10. Kuswandi B, Andres R, Narayanaswamy R (2001) Optical fiber biosensors based on immobilized enzymes. Analyst 126:1469–1491

    Article  CAS  Google Scholar 

  11. Huang J, Yang Y, Shi H, Song Z, Zhao Z, Anzai JI, Osa T, Chen Q (2006) Multi-walled carbon nanotubes-based glucose biosensor prepared by a layer-by-layer technique. Mater Sci Eng 26:113–117

    Article  CAS  Google Scholar 

  12. Dai Z, Xu X, Wu L, Ju H (2004) Detection of trace phenol based on mesoporous silica derived tyrosinase-peroxidase biosensor. Electroanalysis 17:1571–1577

    Article  Google Scholar 

  13. Singh S, Singhal R, Malhotra BD (2007) Immobilization of cholesterol esterase and cholesterol oxidize onto sol-gel films for application to the biosensor. Anal Chim Acta 582:335–343

    Article  CAS  Google Scholar 

  14. Badihi M, Mossberg A, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19:2015–2028

    Article  Google Scholar 

  15. Hussain F, Birch DJS, Pickup JC (2005) Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase. Anal Biochem 339:137–143

    Article  CAS  Google Scholar 

  16. Huang J, Yang Y, Shi H, Song Z, Zhao Z, Anzai JI, Osa T, Chen Q (2006) Multi-walled carbon nanotubes-based glucose biosensor prepared by a layer-by-layer technique. Mater Sci Eng C 26:113–117

    Article  CAS  Google Scholar 

  17. Xu Z, Guo Z, Dong S (2005) Electrogenerated chemi luminescence biosensor with alcohol dehydrogenase and tris (2, 2'-bipyridyl) ruthenium (II) immobilized in sol-gel hybrid material. Biosens Bioelectron 21:455–461

    Article  CAS  Google Scholar 

  18. Yang M, Yang Y, Yang Y, Shen G, Yu R (2005) Microbiosensor for acetylcholine and choline based on electropolymerization/sol-gel derived composite membrane. Anal Chim Acta 530:205–211

    Article  CAS  Google Scholar 

  19. Livage J, Coradin T, (2005) In: Sakka S (eds), Handbook of Sol–gel Science and Technology–Processing, Characterization and Applications, Sol–gel Processing, Kluwer, Dordrecht, 1:485

  20. Liu A, Li T, Wang E (1995) Determination of cysteine and reduced glutathione in human plasma by liquid chromatography with pulsed amperometric electrochemical detection using a platinum-particles modified glassy carbon electrode. Anal Sci 11:597–603

    Article  CAS  Google Scholar 

  21. Agüí L, Manso J, Yanez-Sedeno P, Pingarron JM (2004) Colloidal-gold cysteamine modified carbon paste electrodes as suitable electrode materials for the electrochemical determination of Sulphur-containing compounds: application to the determination of methionine. Talanta 64:1041–1047

    Article  Google Scholar 

  22. Kobayashi M, Miho Y, Nakayama M, Ogura K (1999) Electrochemical oxidative decomposition of cyclic amino acids. Nippon Kagaku Kaishi 4:231–235

    Article  Google Scholar 

  23. Deng P, Xu Z, Feng Y (2014) Acetylene black paste electrode modified with graphene as the voltammetric sensor for selective determination of tryptophan in the presence of high concentrations of tyrosine. Mater Sci Eng C 35:54–60

    Article  CAS  Google Scholar 

  24. Zhu S, Zhang J, Zhao X, Wang H, Xu G, You J (2014) Electrochemical behavior and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with single-walled carbon nano horn. Microchim Acta 181:445–451

    Article  CAS  Google Scholar 

  25. Tang X, LiuY HH, You T (2010) Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta 802:182–2186

    Google Scholar 

  26. Liu Y, Yang Z, Zhong Y, Yu J (2010) Construction of europium hexacyanoferrate film and its electrocatalytic activity to tyrosine determination. Appl Surf Sci 56:3148–3154

    Article  Google Scholar 

  27. Hsiao Y, Su W, Cheng J, Cheng S (2011) Electrochemical determination of cysteine based on conducting polymers/gold nanoparticles hybrid nanocomposites. Electrochim Acta 56:6887–6895

    Article  CAS  Google Scholar 

  28. Dong Y, Zheng JB (2014) A nonenzymatic l-cysteine sensor based on SnO2-MWCNTsnanocomposites. J Mol Liq 196:280–284

    Article  CAS  Google Scholar 

  29. Keita B, Contant R, Mialane P, Sécheresse F, De Oliveira P, Nadjo L (2006) Multi-vanadium substituted polyoxometalates as efficient electrocatalysts for the oxidation of l-cysteine at low potential on glassy carbon electrodes. Electrochem Commun 8:767–772

    Article  CAS  Google Scholar 

  30. de Assis dos Santos SF, Gabriella Angelo da Silva M, Rodrigues Lima P, Roberto Meneghetti M, Tatsuo Kubota L, Oliveira Fonseca Goulart M (2013) A very low potential electrochemical detection of l-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosens Bioelectron 50:202–209

    Article  Google Scholar 

  31. Shahrokhian S (2001) Lead phthalocyanine as a selective carrier for preparation of acysteine-selective electrode. Anal Chem 73:5972–5978

    Article  CAS  Google Scholar 

  32. Cannas C, Musinu A, Peddis D, Piccaluga G (2006) Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a Sol − Gel auto combustion method. Chem Mater 18:3835–3842

    Article  CAS  Google Scholar 

  33. Salunkhe AB, Khot VM, Phadatare MR, Pawar SH (2012) Combustion synthesis of cobalt ferrite nanoparticles-influence of fuel to oxidizer ratio. J Alloys Compd 514:91–96

    Article  CAS  Google Scholar 

  34. B. D. Cullity (1972) Introduction to Magnetic Materials, Addision-Wesley, New York, p 386

  35. Krieble K, Devlin M, Lee SJ, Aldini ST, Snyder JE (2008) Investigation of Ga substitution in cobalt ferrite CoGaxFe2-xO4 using Mossbauer spectroscopy. J Appl Phys 103:1–3

    Article  Google Scholar 

  36. Lawrence K, Pawan K, Amarendra N, Manoranjan K (2013) Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int Nano Lett 3:8

    Article  Google Scholar 

  37. Salunkhe AB, Khot VM, Phadatare MR, Thorat ND, Joshi RS, Yadav HM, Pawar SH (2014) Low-temperature combustion synthesis and magnetostructural properties of Co–Mn nanoferrites. J Magn Mater 352:91–98

    Article  CAS  Google Scholar 

  38. Cullity BD (1978) Elements of X–ray Diffraction, Addison-Wesley Publishing Company, Inc.

  39. Julien C, Massot M, Perez-Vicente C (2000) Structural and vibrational studies of LiNi1-yCoyVO4. Mater Sci Eng B 75:6–12

    Article  Google Scholar 

  40. Musa AY, Kadhum AA, Mohamad H, Rahoma AB, Mesmari AAB (2010) Electrochemical and quantum chemical calculations on 4, 4-dimethyloxazolidine-2-thione as an inhibitor for mild steel corrosion in hydrochloric acid. H J Mol Struct 969:233–237

    Article  CAS  Google Scholar 

  41. Yadav M, Gope L, Sarkar TK (2015) Synthesized amino acid compounds as eco-friendly corrosion inhibitors for mild steel in hydrochloric acid solution: electrochemical and quantum studies. Res Chem Intermed. doi:10.1007/s11164-015-2172-5

    Google Scholar 

  42. Poling GW (1967) Infrared studies of protective films formed by Acetylenic corrosion inhibitors. J Electrochem Soc 114(12):1209–1214

    Article  CAS  Google Scholar 

  43. Suzuki Y, van Dover RB, Gyorgy EM, Phillips JM, Felder RJ (1996) Exchange coupling in single-crystalline spinel-structure (Mn,Zn)Fe2O4/CoFe2O4 bilayers. Phys Rev B Condens Matter 53(21):14016–14019

    Article  CAS  Google Scholar 

  44. Rong CB, Zhang HW, Chen RJ, He SL, Shen BG (2006) The role of dipolar interaction in nanocomposite permanent magnets. J Magn Magn Mater 302:126–136

    Article  CAS  Google Scholar 

  45. Yang Z, Zhang C, Zhang J, Huang L (2013) Development of magnetic single enzyme nanoparticles as an electrochemical sensor for glucose determination. Electrochim Acta 111:25–30

    Article  CAS  Google Scholar 

  46. Wang J, Zhu Z, Munir A, Zhou HS (2011) Fe3O4 nanoparticles-enhanced SPR sensing for ultrasensitive sandwich bio-assay. Talanta 84:783–788

    Article  CAS  Google Scholar 

  47. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1990) Instrumental methods in electrochemistry. Ellis Horwood, Chichester

    Google Scholar 

  48. Razmi H, Heidari H (2009) Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for l-cysteine. Anal Biochem 388:15–19

    Article  CAS  Google Scholar 

  49. Zhou M, Ding J, Guo LP (2007) Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal Chem 79:5328–5335

    Article  CAS  Google Scholar 

  50. Chen ZF, Zheng HZ, Lu C, Zu YB (2007) Oxidation of L-cysteine at a Fluor surfactant-modified gold electrode: lower Overpotential and higher selectivity. Langmuir 23:10816–10822

    Article  CAS  Google Scholar 

  51. Deng CY, Chen JH, Chen XL, Wang MD, Nie Z (2009) Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochim Acta 54:3298–3302

    Article  CAS  Google Scholar 

  52. Kalimuthu P, John SA (2009) Nanostructured electropolymerized film of 5-amino-2-mercapto-1, 3, 4-thiadiazole on glassy carbon electrode for the selective determination of L-cysteine. Electrochem Commun 11:367–370

    Article  CAS  Google Scholar 

  53. Zhang L, Yuan R, Chai Y, Li X (2007) Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and L-cysteine film on an Au electrode. Anal Chim Acta 596:99–105

    Article  CAS  Google Scholar 

  54. Tanga X, Liua Y, Houb H, Youa T (2010) Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182–2186

    Article  Google Scholar 

  55. Fei SH, Chen J, Yao SH, Deng G, Kuang Y (2005) Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modiWed with platinum. Anal Biochem 339:29–35

    Article  CAS  Google Scholar 

  56. Zhang L, Ning L, Zhang ZH, Li SH, Yan H, Pang H, Ma H (2015) Fabrication and electrochemical determination of L-cysteine of the acomposite film based on V-substituted polyoxometalates andAu@2Ag core–shell nanoparticles. Sensors Actuators B 221:28–36

    Article  CAS  Google Scholar 

  57. Galal A, Atta NF, El-Ads EH (2012) Probing cysteine self-assembled monolayers over gold nanoparticles – towards selective electrochemical sensors. Talanta 93:264–273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Council of Iran National Science Foundation and University of Kashan for supporting this work by Grant No (159271/204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.40 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M., Salavati-Niasari, M. & Akbari, A. A magnetic CoFe2O4/SiO2 nanocomposite fabricated by the sol-gel method for electrocatalytic oxidation and determination of L-cysteine. Microchim Acta 184, 825–833 (2017). https://doi.org/10.1007/s00604-016-2064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2064-4

Keywords

Navigation