Skip to main content
Log in

Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups

Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) was anodically oxidized by cyclic voltammetry (CV) in 0.05 M sulfuric acid to introduce hydroxy groups on its surface (GCEox). Next, an imidazolium alkoxysilane (ImAS) is covalently tethered to the surface of the GCEox via silane chemistry. This electrode is further modified with graphene oxide (GO) which, dispersed in water, spontaneously assembles on the electrode surface through electrostatic interaction and π-interaction to give an electrode of type GO/ImAS/GCE. Electroreduction of GO and GCEox by CV yields electroreduced GO (erGO) and an electrode of the type erGO/ImAS/GCE. This electrode displays excellent electrocatalytic activity for the oxidation of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Three fully resolved anodic peaks (at −50 mV, 150 mV and 280 mV vs. Ag/AgCl) are observed during differential pulse voltammetry (DPV). Under optimized conditions, the linear detection ranges are from 30 to 2000 μM for AA, from 20 to 490 μM for UA, and from 0.1 to 5 μM and from 5 μM to 200 μM (two linear ranges) for DA. The respective limits of detection (for an S/N of 3) are 10 μM, 5 μM and 0.03 μM. The GCE modified with erGO and ImAS performs better than a bare GCE or a GCE modified with ImAS only, and also outperforms many other reported electrodes for the three analytes. The method was successfully applied to simultaneous analysis of AA, DA and UA in spiked human urine.

Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid is achieved on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups, through anodic treatment of glassy carbon and silane chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    Article  CAS  Google Scholar 

  2. Heien MLAV, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci U S A 102:10023–10028

    Article  CAS  Google Scholar 

  3. Culleton BF, Larson MG, Kannel WB, Levy D (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham heart study. Ann Intern Med 131:7–13

    Article  CAS  Google Scholar 

  4. Causon R (1997) Validation of chromatographic methods in biomedical analysis viewpoint and discussion. J Chromatogr B Biomed Sci Appl 689(1):175–180

    Article  CAS  Google Scholar 

  5. Gil-Loyzaga P, Pares-Herbute N (1989) HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Dev Brain Res 48(1):157–160

    Article  CAS  Google Scholar 

  6. Li L, Cai X, Ding Y, Gu S, Zhang Q (2013) Synthesis of Mn-doped CdTe quantum dots and their application as a fluorescence probe for ascorbic acid determination. Anal Methods 5(23):6748–6754

    Article  CAS  Google Scholar 

  7. Ahn M, Kim J (2012) Electrochemical behavior of dopamine and ascorbic acid at dendritic Au rod surfaces: selective detection of dopamine in the presence of high concentration of ascorbic acid. J Electroanal Chem 683:75–79

    Article  CAS  Google Scholar 

  8. Arvand M, Ghodsi N (2013) A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals. J Solid State Electrochem 17:775–784

    Article  CAS  Google Scholar 

  9. Cai W, Lai T, Du H, Ye J (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sensors Actuators B Chem 193:492–500

    Article  CAS  Google Scholar 

  10. Ghoreishi SM, Behpour M, Mousavi S, Khoobi A, Ghoreishi FS (2014) Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid in the presence of sodium dodecyl sulphate using a multi-walled carbon nanotube modified carbon paste electrode. RSC Adv 4:37979–37984

    Article  CAS  Google Scholar 

  11. Jiang J, Du X (2014) Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale 6:11303–11309

    Article  CAS  Google Scholar 

  12. Xu T-Q, Zhang Q-L, Zheng J-N, Lv Z-Y, Wei J, Wang A-J, Feng J-J (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115:109–115

    Article  CAS  Google Scholar 

  13. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008

    Article  CAS  Google Scholar 

  14. Lin KC, Huang JY, Chen SM (2014) Simultaneous determination of ascorbic acid, dopamine, uric acid and hydrogen peroxide based on co-immobilization of PEDOT and FAD using multi-walled carbon nanotubes. Anal Methods 6:8321–8327

    Article  CAS  Google Scholar 

  15. Li H, Wang Y, Ye D, Luo J, Su B, Zhang S, Kong J (2014) An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 127:255–261

    Article  CAS  Google Scholar 

  16. Tsierkezos NG, Ritter U, Thaha YN, Downing C, Szroeder P, Scharff P (2015) Multi-walled carbon nanotubes doped with boron as an electrode material for electrochemical studies on dopamine, uric acid, and ascorbic acid. Microchim Acta 183:35–47

    Article  Google Scholar 

  17. Liu X, Wei S, Chen S, Yuan D, Zhang W (2014) Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Appl Biochem Biotechnol 173:1717–1726

    Article  CAS  Google Scholar 

  18. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2014) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1):1–41

    Google Scholar 

  19. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  20. Keeley GP, O'Neill A, Holzinger M, Cosnier S, Coleman JN, Duesberg GS (2011) DMF-exfoliated graphene for electrochemical NADH detection. Phys Chem Chem Phys 13:7747–7750

    Article  CAS  Google Scholar 

  21. Xie X, Zhao K, Xu X, Zhao W, Liu S, Zhu Z, Li M, Shi Z, Shao Y (2010) Study of heterogeneous electron transfer on the graphene/self-assembled monolayer modified gold electrode by electrochemical approaches. J Phys Chem C 114:14243–14250

    Article  CAS  Google Scholar 

  22. Yang S, Xu B, Zhang J, Huang X, Ye J, Yu C (2010) Controllable adsorption of reduced graphene oxide onto self-assembled alkanethiol monolayers on gold electrodes: tunable electrode dimension and potential electrochemical applications. J Phys Chem C 114:4389–4393

    Article  CAS  Google Scholar 

  23. Wang Z, Wu S, Zhang J, Chen P, Yang G, Zhou X, Zhang Q, Yan Q, Zhang H (2012) Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. Nanoscale Res Lett 7:161–167

    Article  Google Scholar 

  24. Raj MA, John SA (2013) Fabrication of electrochemically reduced graphene oxide films on glassy carbon electrode by self-assembly method and their electrocatalytic application. J Phys Chem C 117:4326–4335

    Article  CAS  Google Scholar 

  25. Xin B, Hao J (2014) Imidazolium-based ionic liquids grafted on solid surfaces. Chem Soc Rev 43:7171–7187

    Article  CAS  Google Scholar 

  26. Maroneze CM, Rahim A, Fattori N, da Costa LP, Sigoli FA, Mazali IO, Custodio R, Gushikem Y (2014) Electroactive properties of 1-propyl-3-methylimidazolium ionic liquid covalently bonded on mesoporous silica surface: development of an electrochemical sensor probed for NADH, dopamine and uric acid detection. Electrochim Acta 123:435–440

    Article  CAS  Google Scholar 

  27. Finn M, An N, Voutchkova-Kostal A (2015) Immobilization of imidazolium ionic liquids on hydrotalcites using silane linkers: retardation of memory effect. RSC Adv 5:13016–13020

    Article  CAS  Google Scholar 

  28. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846

    Article  CAS  Google Scholar 

  29. Wang Z, Zhou X, Zhang J, Boey F, Zhang H (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113:14071–14075

    Article  CAS  Google Scholar 

  30. Liu S, Miller B, Chen A (2005) Phenylboronic acid self-assembled layer on glassy carbon electrode for recognition of glycoprotein peroxidase. Electrochem Commun 7(12):1232–1236

    Article  CAS  Google Scholar 

  31. Wang H-S, Ju H-X, Chen H-Y (2001) Voltammetric behavior and detection of DNA at electrochemically pretreated glassy carbon electrode. Electroanalysis 13(13):1105–1109

    Article  CAS  Google Scholar 

  32. Yan H, Xiao H, Xie Q, Liu J, Sun L, Zhou Y, Zhang Y, Chao L, Chen C, Yao S (2015) Simultaneous electroanalysis of isoniazid and uric acid at poly(sulfosalicylic acid)/electroreduced carboxylated graphene modified glassy carbon electrode. Sensors Actuators B Chem 207:167–176

    Article  CAS  Google Scholar 

  33. Wu W-C, Chang H-W, Tsai Y-C (2011) Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid at silicon carbide coated electrodes. Chem Commun 47:6458–6460

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21475041, 21175042) and Hunan Lotus Scholars Program (2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingji Xie.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3.06 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Huang, T., Hu, Y. et al. Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Microchim Acta 183, 2539–2546 (2016). https://doi.org/10.1007/s00604-016-1895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1895-3

Keywords

Navigation