Skip to main content
Log in

Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Graphene nanoplatelets were dispersed in a Nafion matrix and used to modify a glassy carbon electrode for rapid determination of quetiapine (QTP) at the working potential of +990 mV (vs. Ag/AgCl). The material was deposited by drop-casting and characterized by scanning electron microscopy. Owing to the unique properties of graphene and the accumulation capability of the anionic polymer for the cationic target analyte, the modified electrode has a strongly improved limit of detection (22 nM) and works in the 100 nM to 10 μM concentration range. Low-cost quantification of QTP in urine samples without prior extraction was achieved after selective adsorption of QTP at the surface using differential pulse voltammetry. In comparison with HPLC method, the modified electrode allows simpler analysis of QTP in enteric-coated tablets that takes 40 s only.

Graphene nanoplatelets were dispersed in a Nafion matrix and used to modify a glassy carbon electrode for rapid determination of quetiapine in tablets (takes 40 s only) and urine samples after selective adsorption of positively charged drug molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daly EJ, Trivedi MH (2007) A review of quetiapine in combination with antidepressant therapy in patients with depression. Neuropsychiatr Dis Treat 3:855–867

    CAS  Google Scholar 

  2. Piróg-Balcerzak A, Habrat B, Mierzejewski P (2015) Misuse and abuse of quetiapine. Psychiatr Pol 49:81–93

    Article  Google Scholar 

  3. Barrett B, Holcapek M, Huclova J, Borek-Dohalsky V, Fejt P, Memec B, Jelinek I (2007) Validated HPLC-MS/MS method for determination of quetiapine in human plasma. J Pharm Biomed Anal 44:498–505

    Article  CAS  Google Scholar 

  4. Davis PC, Bravo O, Gehrke M, Azumaya CT (2010) Development and validation of an LC-MS/MS method for the determination of quetiapine and four related metabolites in human plasma. J Pharm Biomed Anal 51:1113–1119

    Article  CAS  Google Scholar 

  5. Pan RN, Kuo BP, Pao LH (2012) Validated LC-MS-MS method for the determination of quetiapine in human plasma: application to a pharmacokinetic study. J Chromatogr Sci 50:277–282

    Article  CAS  Google Scholar 

  6. Binz TM, Yegles M, Schneider S, Neels H, Crunelle CL (2014) Time resolved analysis of quetiapine and 7-OH-quetiapine in hair using LC/MS-MS. Forensic Sci Int 242:200–203

    Article  CAS  Google Scholar 

  7. Saracino MA, Mercolini L, Flotta G, Albers LJ, Merli R, Raggi MA (2006) Simultaneous determination of fluvoxamine isomers and quetiapine in human plasma by means of high-performance liquid chromatography. J Chrom B 843:227–233

    Article  CAS  Google Scholar 

  8. Kumar N, Sangeetha D, Goyal R, Reddy PS (2013) A validated stability-indicating RP-LC method for the estimation of process-related impurities and degradation products of quetiapine fumarate in solid oral dosage form. Acta Chromatogr 25:393–409

    Article  CAS  Google Scholar 

  9. Proenca P, Franco JM, Mustra C, Monteiro C, Costa J, Corte-Real F, Vieira DN (2013) UPLC-MS/MS determination in blood of a mixed-drug fatal intoxication: A case report. Forensic Sci Int 227:85–89.

    Article  CAS  Google Scholar 

  10. da Fonseca BM, Moreno IE, Barroso M, Costa S, Queiroz JA, Gallardo E (2013) Determination of seven selected antipsychotic drugs in human plasma using microextraction in packed sorbent and gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 405:3953–3963.

    Article  Google Scholar 

  11. Lopez-Guarnido O, Tabernero MJ, Hernandez AF, Rodrigo L, Bermejo AM (2014) Rapid determination of quetiapine in blood by gas chromatography-mass spectrometry. Appl Post-Mortem Cases J Appl Toxicol 34:1104–1108.

    Article  CAS  Google Scholar 

  12. Skibinski R, Komsta L, Kosztyla I (2008) Comparative validation of quetiapine determination in tablets by NP-HPTLC and RP-HPTLC with densitometric and videodensitometric detection. JPC-J Planar Chromatog-Mod TLC 21:289–294

    Article  CAS  Google Scholar 

  13. Bellomarino SA, Brown AJ, Conlan XA, Barnett NW (2009) Preliminary evaluation of monolithic column high-performance liquid chromatography with tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection for the determination of quetiapine in human body fluids. Talanta 77:1873–1876

    Article  CAS  Google Scholar 

  14. Wang YR, Yang YH, Lu CY, Lin SJ, Chen SH (2013) Trace analysis of acetylcholinesterase inhibitors with antipsychotic drugs for Alzheimer’s disease by capillary electrophoresis with on column field-amplified sample injection. Anal Bioanal Chem 405:3233–3242.

    Article  CAS  Google Scholar 

  15. Wei F, Lin Y, Wu Y, Sun X, Liu L, Zhou P, Hu Q (2014) Double shell CdTe/CdS/ZnS Quantum dots as a fluorescence probe for quetiapine determination in fumarate quetiapine tablets. Anal Methods 6:482–489.

    Article  CAS  Google Scholar 

  16. Rajendraprasad N, Basavaiah K, Vinay KB (2012) Extractive spectrophotometric determination of quetiapine fumarate in pharmaceuticals and spiked human urine. Croat Chem Acta 85:9–17.

    Article  CAS  Google Scholar 

  17. Uřinovská R, Brozmanová H, Sištík P, Silhán P, Kacířová I, Lemr K, Grundmann M (2012) Liquid chromatography-tandem mass spectrometry method for determination of five antidepressants and four atypical antipsychotics and their main metabolites in human serum. J Chromatogr B 907:101–107

    Article  Google Scholar 

  18. Ansermot N, Brawand-Amey M, Kottelat A, Eap CB (2013) Fast quantification of ten psychotropic drugs and metabolites in human plasma by Ultra-high performance liquid chromatography tandem mass spectrometry for therapeutic drug monitoring. J Chromatogr A 1292:160–172

    Article  CAS  Google Scholar 

  19. Amundsen I, Oiestad AM, Ekeberg D, Kristoffersen L (2013) Quantitative determination of fifteen basic pharmaceuticals in ante- and post-mortem whole blood by high pH mobile phase reversed phase Ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 927:112–123

    Article  CAS  Google Scholar 

  20. Yang TH, Cai PS, Li D, Chen J, Xiong CM, Ruan JL, Wang LY (2014) Gamma-MPS-modified silica conical microcolumn separation/preconcentration of trace antipsychotic drugs in rat plasma and environmental water samples prior to their determination by LC. Chromatographia 77:1623–1632

    Article  CAS  Google Scholar 

  21. de Souza ID, Domingues SD, Queiroz MEC (2015) Hybrid silica monolith for microextraction by packed sorbent to determine drugs from plasma samples by liquid chromatography-tandem mass spectrometry. Talanta 140:166–175

    Article  Google Scholar 

  22. Oyama M (2010) Recent nanoarchitectures in metal nanoparticle-modified electrodes for electroanalysis. Anal Sci 26:1–12

    Article  CAS  Google Scholar 

  23. Barsan MM, Ghica ME, Brett CM (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review. Anal Chim Acta 881:1–23

    Article  CAS  Google Scholar 

  24. Nigović B, Sadiković M, Sertić M (2014) Multi-walled carbon nanotubes/nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphine. Talanta 122:187–194

    Article  Google Scholar 

  25. Sadiković M, Nigović B, Jurić S, Mornar A (2014) Voltammetric determination of ropinirole in the presence of levodopa at the surface of a carbon nanotubes based electrochemical sensor in pharmaceuticals and human serum. J Electroanal Chem 733:60–68

    Article  Google Scholar 

  26. Ozkan SA, Dogan B, Uslu B (2006) Voltammetric analysis of the novel atypical antipsychotic drug quetiapine in human serum and urine. Microchim Acta 154:27–35

    Article  Google Scholar 

  27. El-Enany N, El-Brashy A, Belal F, El-Bahay N (2009) Polarographic analysis of quetiapine in pharmaceuticals. Port Electrochim Acta 27:113–125

    Article  CAS  Google Scholar 

  28. Nigović B, Spajić J (2011) A novel electrochemical sensor for assaying of antipsychotic drug quetiapine. Talanta 86:393–399

    Article  Google Scholar 

  29. Ramachandran R, Mani V, Chen S-M, Saraswathi R, Lou B-S (2013) Recent trends in graphene based electrode materials for energy storage devices and sensors applications. Int J Electrochem Sci 8:11680–11694

    CAS  Google Scholar 

  30. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. TrAC Trends Anal Chem 39:87–113

    Article  CAS  Google Scholar 

  31. The United States Pharmacopoeia, 38th ed. (2015) United States pharmacopeial convention, Rockville, MD

  32. Sparshatt A, Jones S, Taylor D (2008) Quetiapine: dose-response relationship in schizophrenia. CNS Drugs 22:49–68

    Article  CAS  Google Scholar 

  33. International Conference on Harmonization (2005) Validation of analytical procedures: Text and methodology Q2 (R1).http://www.ich.org/products/guidelines/quality/article/quality-guidelines.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Nigović.

Ethics declarations

The author(s) declare that they have no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigović, B., Mornar, A. & Sertić, M. Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine. Microchim Acta 183, 1459–1467 (2016). https://doi.org/10.1007/s00604-016-1781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1781-z

Keywords

Navigation