Skip to main content
Log in

Ultrasensitive electrochemical sensing of dopamine using reduced graphene oxide sheets decorated with p-toluenesulfonate-doped polypyrrole/Fe3O4 nanospheres

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a hybrid nanocomposite consisting of polypyrrole (PPy) nanospheres doped with p-toluenesulfonic acid (p-TSA) and deposited on sheets of reduced graphene oxide (rGO). The rGO sheets oxide were first coated with Fe3O4 particles, and pyrrole was then polymerized on their surface to obtain architecture of the type PPy/Fe3O4/rGO. Addition of p-TSA during polymerization leads to the formation of p-TSA-doped PPy to obtain doped-PPy/Fe3O4/rGO. The resulting nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, FTIR, X-ray diffraction spectrometry and X-ray photoelectron spectroscopy. The nanocomposite was placed on a glassy carbon electrode to give an electrochemical sensor for dopamine (DA) that has a fairly low operational voltage (0.3–0.6 V vs. SCE), a wide linear range (7.0 nM–2.0 μM), a low detection limit (2.33 nM), and good selectivity for DA over ascorbic acid and uric acid. It gave satisfactory results in the determination of DA in spiked samples of urine and serum.

A novel hybrid nanocomposite of p-toluenesulfonate-doped polypyrrole@magnetite nanospheres decorated onto reduced graphene oxide sheets (RGO) was prepared. This nanocomposite was immobilized on a glassy carbon electrode (GCE) to fabricate an electrochemical sensor to determine dopamine (DA)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yusoff N, Pandikumar A, Ramaraj R, Ngee LH, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114. doi:10.1007/s00604-015-1609-2

    Article  CAS  Google Scholar 

  2. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41. doi:10.1007/s00604-014-1308-4

    Article  CAS  Google Scholar 

  3. Wang WT, Wang W, Davis JJ (2015) Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchim Acta 182:1123–1129. doi:10.1007/s00604-014-1418-z

    Article  CAS  Google Scholar 

  4. Wang Q, Tang QL (2015) Improved sensing of dopamine and ascorbic acid using a glassy carbon electrode modified with electrochemically synthesized nickel-cobalt hexacyanoferrate microparticles deposited on graphene. Microchim Acta 182:671–677. doi:10.1007/s00604-014-1371-x

    Article  CAS  Google Scholar 

  5. Xing LW, Ma ZF (2015) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta. doi:10.1007/s00604-015-1648-8

    Google Scholar 

  6. Qian T, Wu SS, Shen J (2013) Facilely prepared polypyrrole-reduced graphite oxide core–shell microspheres with high dispersibility for electrochemical detection of dopamine. Chem Commun 49:4610–4612. doi:10.1039/C3CC00276D

    Article  CAS  Google Scholar 

  7. Park DE, Chae HS, Choi HJ, Maity A (2015) Magnetite–polypyrrole core–shell structured microspheres and their dual stimuli-response under electric and magnetic fields. J Mater Chem C 3:3150–3158. doi:10.1039/C5TC00007F

    Article  CAS  Google Scholar 

  8. Xiao HM, Fu SY (2014) Synthesis and physical properties of electromagnetic polypyrrole composites via addition of magnetic crystals. Cryst Eng Comm 16:2097–2112. doi:10.1039/C3CE40995C

    Article  CAS  Google Scholar 

  9. Sasso L, Heiskanen A, Diazzi F, Dimaki M, CastilloLeon J, Vergani M, Landini E, Raiteri R, Ferrari G, Carminati M, Sampietro M, Svendsena W, Emnéus J (2013) Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released fromcell populations. Analyst 138:3651–3659. doi:10.1039/C3AN00085K

    Article  CAS  Google Scholar 

  10. Zhang Z, Li Q, Yu L, Cui Z, Zhang L, Bowmaker GA (2011) Highly conductive polypyrrole/γ-Fe2O3 nanospheres with good magnetic properties obtained through an improved chemical One-step method. Macromolecules 44:4610–4615. doi:10.1021/ma2006359

    Article  CAS  Google Scholar 

  11. Yan L, Zheng YB, Zhao F, Li S, Gao X, Xu B, Weiss PS, Zhao Y (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:97–114. doi:10.1039/C1CS15172J

    Article  CAS  Google Scholar 

  12. Liao CZ, Zhang M, Niu LY, Zheng ZJ, Yan F (2014) Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J Mater Chem B 2:191–200. doi:10.1039/C3TB21079K

    Article  CAS  Google Scholar 

  13. Feng XM, Zhang Y, Zhou JH, Li Y, Chen SF, Zhang L, Ma YW, Wang LH, Yan XH (2015) Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7:2427–2432. doi:10.1039/C4NR06623E

    Article  CAS  Google Scholar 

  14. Haque AMJ, Park H, Sung D, Jon S, Choi SY, Kim K (2012) An electrochemically reduced graphene oxide based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem 84:1871–1878. doi:10.1021/ac202562v

    Article  CAS  Google Scholar 

  15. Li XH, Zhu H, Feng J, Zhang J, Deng X, Zhou B, Zhang H, Xue D, Li F, Mellors N, Li YF, Peng Y (2013) One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60:488–497. doi:10.1016/j.carbon.2013.04.068

    Article  CAS  Google Scholar 

  16. Zhou H, Yao W, Li G, Wang J, Lu Y (2013) Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon 59:495–502. doi:10.1016/j.carbon.2013.03.045

    Article  CAS  Google Scholar 

  17. Yao W, Ni T, Chen S, Li H, Lu Y (2014) Graphene/Fe3O4@polypyrrole nanocomposites as a synergistic adsorbent for Cr(VI) ion removal. Compos Sci Technol 99:15–22. doi:10.1016/j.compscitech.2014.05.007

    Article  CAS  Google Scholar 

  18. Wang Y, Zou B, Gao T, Wu X, Lou S, Zhou S (2012) Synthesis of orange-like Fe3O4/PPy composite microspheres and their excellent Cr(VI) ion removal properties. J Mater Chem 22:9034–9040. doi:10.1039/C2JM30440F

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang Y, Hou C, Qi Z, He X (2015) Facile synthesis of monodisperse functional magnetic dialdehyde starch nano-composite and used for highly effective recovery of Hg(II). Chemosphere 141:26–33. doi:10.1016/j.chemosphere.2015.06.019

    Article  CAS  Google Scholar 

  20. Teymourian H, Salimi A, Firoozi S (2014) A high performance electrochemical biosensing platform for glucose detection and IgE aptasensing based on Fe3O4/reduced graphene oxide nanocomposite. Electroanal 26:129–138. doi:10.1002/elan.201300496

    Article  CAS  Google Scholar 

  21. Ma HL, Zhang YW, Hu QH, Yan D, Yu ZZ, Zhai ML (2012) Chemical reduction and removal of Cr(VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide. J Mater Chem 22:5914–5916. doi:10.1039/C2JM00145D

    Article  CAS  Google Scholar 

  22. Zhou KF, Zhu YH, Yang XL, Li CZ (2010) One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem 34:2950–2955. doi:10.1039/C0NJ00283F

    Article  CAS  Google Scholar 

  23. Fan W, Gao W, Zhang C, Tjiu WW, Pan JS, Liu TX (2012) Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. J Mater Chem 22:25108–25115. doi:10.1039/C2JM35609K

    Article  CAS  Google Scholar 

  24. Sun L, Wang L, Tian CG, Tan TX, Xie Y, Shi KY, Li M, Fu H (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2:4498–4506. doi:10.1039/C2RA01367C

    Article  CAS  Google Scholar 

  25. Zheng M, Gao F, Wang Q, Cai X, Jiang S, Huang L, Gao F (2013) Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite. Mater Sci Eng C-Mater 33:1514–1520. doi:10.1016/j.msec.2012.12.055

    Article  CAS  Google Scholar 

  26. Yang J, Strickler JR, Gunasekaran S (2012) Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes fordopamine sensing in meat samples. Nanoscale 4:4594–4602. doi:10.1039/C2NR30618B

    Article  CAS  Google Scholar 

  27. Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors Actuators B Chem 186:380–387. doi:10.1016/j.snb.2013.06.020

    Article  CAS  Google Scholar 

  28. Teymourian H, Salimi A, Khezrian S (2013) Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens Bioelectron 49:1–8. doi:10.1016/j.bios.2013.04.034

    Article  CAS  Google Scholar 

  29. Wang X, Wu M, Tang W, Zhu Y, Wang LW, Wang QJ, He PJ, Fang YZ (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode. J Electroanal Chem 695:10–16. doi:10.1016/j.jelechem.2013.02.021

    Article  CAS  Google Scholar 

  30. Si P, Chen HL, Kannan P, Kim DH (2011) Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes. Analyst 136:5134–5138. doi:10.1039/C1AN15772H

    Article  CAS  Google Scholar 

  31. Hou SF, Kasner ML, Su SJ, Patel K, Cuellari R (2010) Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J Phys Chem C 114:14915–14921. doi:10.1021/jp1020593

    Article  CAS  Google Scholar 

  32. Liu S, Yan J, He GW, Zhong DD, Chen JX, Shi LY, Zhou XM, Jiang HJ (2012) Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. J Electroanal Chem 672:40–44. doi:10.1016/j.jelechem.2012.03.007

    Article  CAS  Google Scholar 

  33. Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4:3129–3133. doi:10.1021/am300459m

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial supports from the National Natural Science Foundation of China (No. 21304040), Natural Science Foundation of Gansu Province (1308RJYA027) and Chinese Postdoctoral Funds (2013 M532090). This paper is dedicated to memory of our former tutor, pro. Yanfeng Li, who passed away.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Zhang or Mingzhu Liu.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Y., Hou, C. et al. Ultrasensitive electrochemical sensing of dopamine using reduced graphene oxide sheets decorated with p-toluenesulfonate-doped polypyrrole/Fe3O4 nanospheres. Microchim Acta 183, 1145–1152 (2016). https://doi.org/10.1007/s00604-016-1742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1742-6

Keywords

Navigation