Skip to main content
Log in

Ratiometric colorimetric determination of coenzyme A using gold nanoparticles and a binuclear uranyl complex as optical probes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a ratiometric colorimetric method for the determination of coenzyme A (CoA) by using gold nanoparticles (AuNPs) and bis-uranyl-bis-sulfosalophen (BUBSS) as optical probes. BUBSS is a binuclear uranyl complex and formed through the chelating reaction of two uranyl ions with bis-sulfosalophen. CoA is captured by the AuNPs via the thiol group and this leads to the formation of CoA-AuNPs. In a second step, BUBSS binds two CoA-AuNPs through a coordination reaction between the uranyl ions in BUBSS and the phosphate groups in CoA-AuNPs. This causes the CoA-AuNPs to aggregate and results in a color change from wine red to blue. A ratiometric colorimetric assay was established for CoA based on the ratiometric measurement of absorbance changes at 650 and 525 nm. Their ratio is linearly related to the concentration of CoA in the 0 to 1.2 μmol⋅L-1 range, with a 6 nmol⋅L-1 detection limit under optimal conditions. The method was successfully applied to the determination of CoA in spiked liver samples with recoveries between 99.4 and 102.6 %.

Gold nanoparticles (AuNPs) capture Coenzyme A (CoA) firstly and then bind bis-uranyl-bis-sulfosalophen (BUBSS). This causes their aggregation and results in a color change. A ratiometric colorimetric assay was established for CoA based on measuring absorbances at 630 and 525 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davaapil H, Tsuchiya Y, Gout I (2014) Signaling functions of coenzyme a and its derivatives in mammalian cells. Biochem Soc Trans 42:1056–1062

    Article  CAS  Google Scholar 

  2. Martinez DL, Tsuchiya Y, Gout I (2014) Coenzyme a biosynthetic machinery in mammalian cells. Biochem Soc Trans 42:1112–1117

    Article  CAS  Google Scholar 

  3. Allred JB, Guy DG (1969) Determination of coenzyme a and acetyl CoA in tissue extracts. Anal Biochem 29:293–299

    Article  CAS  Google Scholar 

  4. McDougal Jr DB, Dargar RV (1979) A spectrophotometric cycling assay for reduced coenzyme a and its esters in small amounts of tissue. Anal Biochem 97:103–115

    Article  CAS  Google Scholar 

  5. Marques SM, Esteves da Silva JCG (2008) An optimized luciferase bioluminescent assay for coenzyme a. Anal Bioanal Chem 391:2161–2168

    Article  CAS  Google Scholar 

  6. Shibata K, Nakai T, Fukuwatari T (2012) Simultaneous high-performance liquid chromatography determination of coenzyme a, dephospho-coenzyme a, and acetyl-coenzyme a in normal and pantothenic acid-deficient rats. Anal Biochem 430:151–155

    Article  CAS  Google Scholar 

  7. Halvorsen O, Skrede S (1980) Separation of coenzyme-a and its precursors by reversed-phase high-performance liquid-chromatography. Anal Biochem 107:103–108

    Article  CAS  Google Scholar 

  8. Li J, Ge X, Jiang C (2007) Spectrofluorimetric determination of trace amounts of coenzyme a using terbium ion-ciprofloxacin complex probe in the presence of periodic acid. Anal Bioanal Chem 387:2083–2089

    Article  CAS  Google Scholar 

  9. Vallejos S, Estevez P, Ibeas S, Garcia FC, Serna F, Garcia JM (2012) An organic/inorganic hybrid membrane as a solid "turn-on" fluorescent chemosensor for coenzyme a (CoA), cysteine (Cys), and glutathione (GSH) in aqueous media. Sensors 12:2969–2982

    Article  CAS  Google Scholar 

  10. Cheng M, Qiang X, Du C (2013) Fluorescent detection of coenzyme a by analyte-induced aggregation of a cationic conjugated polymer. Chinese Sci Bull 58:1256–1261

    Article  CAS  Google Scholar 

  11. Giljanovic J, Prkic A (2010) Determination of coenzyme a (CoASH) in the presence of different thiols by using flow-injection with a UV/vis spectrophotometric detector and potentiometric determination of CoASH using an iodide ISE. Molecules 15:100–113

    Article  CAS  Google Scholar 

  12. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  CAS  Google Scholar 

  13. Maity D, Bhatt M, Paul P (2015) Calix[4]arene functionalized gold nanoparticles for colorimetric and bare-eye detection of iodide in aqueous media and periodate aided enhancement in sensitivity. Microchim Acta 182:377–384

    Article  CAS  Google Scholar 

  14. Ratnarathorn N, Chailapakul O, Dungchai W (2015) Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles. Talanta 132:613–618

    Article  CAS  Google Scholar 

  15. Pandya A, Joshi KV, Modi NR, Menon SK (2012) Rapid colorimetric detection of sulfide using calix[4]arene modified gold nanoparticles as a probe. Sens Actuat B 168:54–61

    Article  CAS  Google Scholar 

  16. Akhond M, Absalan G, Ershadifar H (2015) Highly sensitive colorimetric determination of amoxicillin in pharmaceutical formulations based on induced aggregation of gold nanoparticles. Spectrochim Acta A 143:223–229

    Article  CAS  Google Scholar 

  17. Kumar N, Seth R, Kumar H (2014) Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Anal Biochem 456:43–49

    Article  CAS  Google Scholar 

  18. Giannoulis KM, Giokas DL, Tsogas GZ, Vlessidis AG (2014) Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction. Talanta 119:276–283

    Article  CAS  Google Scholar 

  19. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  20. Thavanathan J, Huang NM, Thong KL (2014) Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide. Biosen Bioelectron 55:91–98

    Article  CAS  Google Scholar 

  21. Verdoold R, Gill R, Ungureanu F, Molenaar R, Kooyman RPH (2011) Femtomolar DNA detection by parallel colorimetric darkfield microscopy of functionalized gold nanoparticles. Biosens Bioelectron 27:77–81

    Article  CAS  Google Scholar 

  22. Choi I, Yang YI, Jeong E, Kim K, Hong S, Kang T, Yi J (2012) Colorimetric tracking of protein structural evolution based on the distance-dependent light scattering of embedded gold nanoparticles. Chem Commun 48:2286–2288

    Article  CAS  Google Scholar 

  23. Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KRC, Ingison CK, Ponder JB, Sen A, Wittrig AE (2011) Rapid identification of bacteria with a disposable colorimetric sensing array. J Am Chem Soc 133:7571–7576

    Article  CAS  Google Scholar 

  24. Templeton AC, Chen S, Gross SM, Murray RW (1999) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme a monolayers. Langmuir 15:66–76

    Article  CAS  Google Scholar 

  25. Rudkevich DM, Verboom W, Brzozka Z, Palys MJ, Stauthamer WPRV, Van Hummel GJ, Franken SM, Harkema S, Engbersen JFJ, Reinhoudt DN (1994) Functionalized UO2 salenes: neutral receptors for anions. J Am Chem Soc 116:4341–4351

    Article  CAS  Google Scholar 

  26. Sessler JL, Melfi PJ, Pantos GD (2006) Uranium complexes of multidentate N-donor ligands. Coordin Chem Rev 250:816–843

    Article  CAS  Google Scholar 

  27. Antonisse MMG, Snellink-Ruël BHM, Engbersen JFJ, Reinhoudt DN (1998) H2PO- 4-selective CHEMFETs with uranyl salophene receptors. Sensors Actuators B Chem 47:9–12

    Article  CAS  Google Scholar 

  28. Kim J, Kang DM, Shin SC, Choi MY, Kim J, Lee SS, Kim JS (2008) Functional polyterthiophene-appended uranyl-salophen complex: electropolymerization and ion-selective response for monohydrogen phosphate. Anal Chim Acta 614:85–92

    Article  CAS  Google Scholar 

  29. Wojciechowski K, Wróblewski W, Brzózka Z (2003) Anion buffering in the internal electrolyte resulting in extended durability of phosphate-selective electrodes. Anal Chem 75:3270–3273

    Article  CAS  Google Scholar 

  30. Wróblewski W, Wojciechowski K, Dybko A, Brzózka Z, Egberink RJM, Snellink-Ruël BHM, Reinhoudt DN (2000) Uranyl salophenes as ionophores for phosphate-selective electrodes. Sensors Actuators B Chem 68:313–318

    Article  Google Scholar 

  31. Wygladacz K, Qin Y, Wroblewski W, Bakker E (2008) Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Anal Chim Acta 614:77–84

    Article  CAS  Google Scholar 

  32. He Y, Liao L, Xu C, Wu R, Li S, Yang Y (2015) Determination of ATP by resonance light scattering using a binuclear uranyl complex and aptamer modified gold nanoparticles as optical probes. Microchim Acta 182:419–426

    Article  CAS  Google Scholar 

  33. Liu G, Chen J, Che P, Ma Y (2003) Separation and quantitation of short-chain coenzyme a’s in biological samples by capillary electrophoresis. Anal Chem 75:78–82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (NSFC Nos. 11275091, 11475079) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifu Liao.

Electronic supplementary material

ESM 1

(DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Liao, L., Li, S. et al. Ratiometric colorimetric determination of coenzyme A using gold nanoparticles and a binuclear uranyl complex as optical probes. Microchim Acta 183, 715–721 (2016). https://doi.org/10.1007/s00604-015-1716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1716-0

Keywords

Navigation