Skip to main content
Log in

Vortex-assisted liquid-liquid microextraction of bisphenol S prior to its determination by HPLC with UV detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Vortex-assisted liquid-liquid microextraction (VALLME) for the rapid extraction of trace bisphenol S (BPS) in environmental water is presented. In order to simplify the procedure, an in-house fabricated glass dropper with different internal diameters of the two ends is exploited. The solidification-melt step was cut in VALLME by means of the in-house fabricated glass dropper. After extraction with 2-ethylhexanol, BPS was detected by high performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Factors such as type and volume of extraction solvent, extraction time, sample pH and ionic strength were evaluated. Under optimized conditions, the linearity range varied from 0.10 to 50 μg L−1 with a squared regression coefficient r2 of 0.9995. The relative standard deviation (RSD) is 2.3 % (n = 7). The limit of detection (LOD) and limit of quantification (LOQ) are 0.02 and 0.06 μg L−1, respectively. The presented method was employed for the determination of BPS in real water samples. The relative recoveries are 81.8–87.3 % for the two real water samples. The method is shown to be economical, fast and can be routinely performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee CC, Jiang LY, Kuo YL, Hsieh CY, Chen CS, Tien CJ (2013) The potential role of water quality parameters on occurrence of nonylphenol and bisphenol a and identification of their discharge sources in the river ecosystems. Chemosphere 91(7):904

    Article  CAS  Google Scholar 

  2. Du LY, Zhang CY, Wang LJ, Liu GF, Zhang YF, Wang SH (2015) Ultrasensitive time-resolved microplate fluorescence immunoassay for bisphenol a using a system composed on gold nanoparticles and a europium(III)-labeled streptavidin tracer. Microchim Acta 182:539

    Article  CAS  Google Scholar 

  3. Chen WY, Mei LP, Feng JJ, Yuan T, Wang AJ, Yu HY (2015) Electrochemical determination of bisphenol a with a glassy carbon electrode modified with gold nanodendrites. Microchim Acta 182:703

    Article  CAS  Google Scholar 

  4. Bondesson M, Jonsson J, Pongratz I, Olea N, Cravedi JP, Zalko D, Hakansson H, Halldin K, Di Lorenzo D, Behl C (2009) A cascade of effects of bisphenol a. Reprod Toxicol 28:563

    Article  CAS  Google Scholar 

  5. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol a. Environ Health Perspect 118(8):1055

    Article  CAS  Google Scholar 

  6. Food US, Administration D (2010) Update on bisphenol a for use in food con-tact applications. US Food and Drug Administration, Washington DC Available at http://www.fda.gov/newsevents/publichealthfocus/ucm064437.htm

    Google Scholar 

  7. Liao CY, Liu F, Alomirah H, Loi YD, Mohd MA, Moon HB, Nakata H, Kannan K (2012) Bisphenol S in urine from the united states and seven Asian countries: occurrence and human exposures. Environ Sci Technol 46(12):6860

    Article  CAS  Google Scholar 

  8. Ji K, Hong S, Kho Y, Choi K (2013) Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish. Environ Sci Technol 47(15):8793

    CAS  Google Scholar 

  9. Naderi M, Marian YL, Wong FG (2014) Developmental exposure of zebrafish (danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat Toxicol 148:195

    Article  CAS  Google Scholar 

  10. Ryoko KN, Ryushi N, Takashi M, Tatsushi S, Yoshiyasu T (2005) Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system. Environ Toxicol Pharmacol 19(1):121

    Article  Google Scholar 

  11. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169

    Article  CAS  Google Scholar 

  12. Farajzadeh MA, Sorouraddin SM, Mogaddam MRA (2014) Liquid phase microextraction of pesticides: a review on current methods. Microchim Acta 181:829

    Article  CAS  Google Scholar 

  13. Ahad BT, Ali. A (2013) Dispersive liquid-liquid microextraction for the high performance liquid chromatographic determination of aldehydes in cigarette smoke and injectable formulations. J Hazard Mater 254-255: 390

  14. Seyedeh MY, Farzaneh S (2013) Selective and sensitive speciation analysis of Cr(VI) and Cr(III) in water samples by fiber optic-linear array detection spectrophotometry after ion pair based-surfactant assisted dispersive liquid-liquid microextraction. J Hazard Mater 254-255:134

    Article  Google Scholar 

  15. Berton P, Regmi BP, Spivak DA, Warner IM (2014) Ionic liquid-based dispersive microextraction of nitrotoluenes in water samples. Microchim Acta 181:1191

    Article  CAS  Google Scholar 

  16. Marube LC, Caldas SS, Soares KL, Primel EG (2015) Dispersive liquid-liquid microextraction with solidification of floating organic droplets for simultaneous extraction of pesticides, pharmaceuticals and personal care products. Microchim Acta in press

  17. Román IP, Mastromichali A, Tyrovola K, Canals A, Psillakis E (2014) Rapid determination of octanol-water partition coefficient using vortex-assisted liquid-liquid microextraction. J Chromatogr A 1330:1

    Article  Google Scholar 

  18. Faraji H, Feizbakhsh A, Helalizadeh M (2013) Modified dispersive liquid-liquid microextraction for pre-concentration of benzene, toluene, ethylbenzene and xylenes prior to their determination by GC. Microchim Acta 180:1141

    Article  CAS  Google Scholar 

  19. Papadopoulou A, Román IP, Canals A, Tyrovola K, Psillakis E (2011) Fast screening of perfluorooctane sulfonate in water using vortex-assisted liquid-liquid microextractioncoupled to liquid chromatography-mass spectrometry. Anal Chim Acta 691(1–2):56

    Article  CAS  Google Scholar 

  20. Guang C, Liu JJ, Liu MG, Li GL, Sun ZW, Zhang SJ, Song CH, Wang H, Suo YR, You JM (2014) Sensitive, accurate and rapid detection of trace aliphatic amines in environmental samples with ultrasonic-assisted derivatization microextraction using a new fluorescent reagent for high performance liquid chromatography. J Chromatogr A 1352:8

    Article  Google Scholar 

  21. Peng XZ, Jin JB, Wang CW, Ou WH, Tang CM (2015) Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assistedextraction and ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1384:97

    Article  CAS  Google Scholar 

  22. Liao QG, Li WH, Luo LG (2013) Ultrasound-assisted emulsification-microextraction for the sensitive determination of ethyl carbamate in alcoholic beverages. Anal Bioanal Chem 405(21):6791

    Article  CAS  Google Scholar 

  23. Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N (2013) Vortex-assisted liquid-liquid microextraction of octylphenol, nonylphenol and bisphenol-a. Talanta 80(5):2057

    Article  Google Scholar 

  24. Ghambarian M, Yamini Y, Esrafili A (2013) Liquid-phase microextraction based on solidified floating drops of organic solvents. Microchim Acta 180:519

    Article  CAS  Google Scholar 

  25. Abu-Bakar N, Makahleh A, Saad B (2014) Vortex-assisted liquid-liquid microextraction coupled with high performance liquid chromatography for the determination of furfurals and patulin in fruit juices. Talanta 120:47

    Article  CAS  Google Scholar 

  26. Ghambarian M, Yamini Y, Esrafili A (2013) Liquid-phase microextraction based on solidified floating drops of organic solvents. Microchim Acta 180:519

    Article  CAS  Google Scholar 

  27. Chung RJ, Leong MI, Huang SD (2012) Determination of nitrophenols using ultrahigh pressure liquid chromatography and a new manual shaking-enhanced, ultrasound-assisted emulsification microextraction method based on solidification of a floating organic droplet. J Chromatogr A 1246:55

    Article  CAS  Google Scholar 

  28. Kamarei F, Ebrahimzadeh H, Yamini Y (2011) Optimization of ultrasound-assisted emulsification microextraction with solidification of floating organic droplet followed by high performance liquid chromatography for the analysis of phthalate esters in cosmetic and environmental water samples. Microchem J 99(1):26

    Article  CAS  Google Scholar 

  29. Abedi H, Ebrahimzadeh H, Ghasemi JB (2015) Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline. Microchim Acta 182:633

    Article  CAS  Google Scholar 

  30. Diao CP, Wei CH (2012) Rapid determination of anilines in water samples by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to gas chromatography-mass spectrometry. Anal Bioanal Chem 403:877

    Article  CAS  Google Scholar 

  31. Sarafraz-Yazdi A, Rounaghi G, Vatani H, Razavipanah I, Amiri A (2015) Headspace solid phase microextraction of volatile aromatic hydrocarbons using a steel wire coated with an electrochemically prepared nanocomposite consisting of polypyrrole, carbon nanotubes, and titanium oxide. Microchim Acta 182:217

    Article  CAS  Google Scholar 

  32. Dai LP, Cheng J, Matsadiq G, Liu L, Li JK (2010) Dispersive liquid-liquid microextraction based on the solidification of floating organic droplet for the determination of polychlorinated biphenyls in aqueous samples. Anal Chim Acta 674(2):201

    Article  CAS  Google Scholar 

  33. Zhou XL, Kramer JP, Calafat AM, Ye XY (2014) Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol a, bisphenol F, bisphenol S, and 11 other phenols in urine. J Chromatogr B 944(1):152

    Article  CAS  Google Scholar 

  34. Vela-Soria F, Ballesteros O, Zafra-Gómez A, Ballesteros L, Navalón A (2014) UHPLC-MS/MS method for the determination of bisphenol a and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples. Anal Biochem Acta 406(15):3773

    CAS  Google Scholar 

  35. Cao GP, Chen T, Zhuang YF (2013) Simple and sensitive synchronous- fluorescence method for the determination of trace bisphenol S based on its inhibitory effect on the fluorescence quenching reaction of rhodamine B. J Fluoresc 23(4):641

    Article  CAS  Google Scholar 

  36. Viñas P, Campillo N, Martínez-Castillo N, Hernández-Córdoba M (2010) Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol a, bisphenol S and biphenol migrated from food cans. Anal Bioanal Chem 397(1): 115

Download references

Acknowledgments

This work was supported by Program of National Natural Science of China (No. 31170110), Research Encouragement Foundation of Excellent Midlife-Youth Scientists of Shandong Province (No.BS2015HZ014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-min Liu.

Electronic supplementary material

ESM 1

(DOC 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, Cp., Yang, X., Sun, Al. et al. Vortex-assisted liquid-liquid microextraction of bisphenol S prior to its determination by HPLC with UV detection. Microchim Acta 182, 2593–2600 (2015). https://doi.org/10.1007/s00604-015-1635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1635-0

Keywords

Navigation