Skip to main content
Log in

Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite

Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes.

NO electrochemical sensor based on CTAB-Nafion/CNFPME was fabricated through a simple method and applied to detect NO released from mouse hepatocytes successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Endo M, Kim YA, Fukai T, Hayashi T, Oshisa K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1269

    Article  CAS  Google Scholar 

  2. Vamvakaki V, Tsagaraki K, Chaniotakis N (2006) Carbon nanofiber-based glucose biosensor. Anal Chem 78:5538–5542

    Article  CAS  Google Scholar 

  3. Cui H, Kalinin SV, Yang X, Lowndes DH (2004) Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging. Nano Lett 4:2157–2161

    Article  CAS  Google Scholar 

  4. Kim SU, Lee KH (2004) Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chem Phys Lett 400:253–257

    Article  CAS  Google Scholar 

  5. Monereo O, Claramunt S, Martínez de Marigorta M, Boix M, Leghrib R, Prades JD, Cornet A, Merino P, Merino C, Cirera A (2013) Flexible sensor based on carbon nanofibers with multifunctional sensing features. Talanta 107:239–247

    Article  CAS  Google Scholar 

  6. Xu L, Guo QH, Yu H, Huang JS, You TY (2012) Simultaneous determination of three β-blockers at a carbon nanofiber paste electrode by capillary electrophoresis coupled with amperometric detection. Talanta 97:462–467

    Article  CAS  Google Scholar 

  7. Tiberg F, Brinck J, Grant L (1999) Adsorption and surface-induced self-assembly of surfactants at the solid-aqueous interface. Curr Opin Colloid In 4:411–419

    Article  CAS  Google Scholar 

  8. Skartlien R, Furtado K, Sollum E, Meakin P, Kralova I (2011) Lattice-Boltzmann simulations of dynamic interfacial tension due to soluble amphiphilic surfactant. Physica A 390:2291–2302

    Article  CAS  Google Scholar 

  9. Kumar SMS, Chandrasekara Pillai K (2006) Cetyltrimethyl ammonium bromide surfactant-assisted morphological and electrochemical changes in electrochemically prepared nanoclustered iron(III) hexacyanoferrate. J Electroanal Chem 589:167–175

    Article  CAS  Google Scholar 

  10. Levent A, Altun A, Yardım Y, Şentürk Z (2014) Sensitive voltammetric determination of testosterone in pharmaceuticals and human urine using a glassy carbon electrode in the presence of cationic surfactant. Electrochim Acta 128:54–60

    Article  CAS  Google Scholar 

  11. Peng Y, Xu JH, Zhao J (2008) Electrochemical behavior of phenol at acetylene black-dihexadecyl hydrogen phosphate composite modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide. Russ J Electrochem 44:206–212

    Article  CAS  Google Scholar 

  12. Chen SM, Chzo WY (2006) Simultaneous voltammetric detection of dopamine and ascorbic acid using didodecyldimethylammonium bromide (DDAB) film-modified electrodes. J Electroanal Chem 587:226–234

    Article  CAS  Google Scholar 

  13. Manjunatha JM, Kumara Swamy BE, Gilbert O, Mamatha GP, Sherigara BS (2010) Sensitive voltammetric determination of dopamine at salicylic acid and TX-100, SDS, CTAB Modified Carbon Paste Electrode. Int J Electrochem Sci 5:682–695

    CAS  Google Scholar 

  14. Hu CG, Yang CH, Hu SS (2007) Hydrophobic adsorption of surfactants on water-soluble carbon nanotubes: a simple approach to improve sensitivity and antifouling capacity of carbon nanotubes-based electrochemical sensors. Electrochem Commun 9:128–134

    Article  CAS  Google Scholar 

  15. Moussy F, Jakeway S, Harrlson DJ, Rajottet RV (1994) In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing. Anal Chem 66:3882–3888

    Article  CAS  Google Scholar 

  16. Dang XP, Hu H, Wang SF, Hu SS (2015) Nanomaterials-based electrochemical sensors for nitric oxide. Microchim Acta 182:455–467

    Article  CAS  Google Scholar 

  17. Friedemann MN, Robinson SW, Gerhardt GA (1996) O-phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621–2628

    Article  CAS  Google Scholar 

  18. Butler AR, Williams DLH (1993) The physiological role of nitric oxide. Chem Soc Rev 22:233–241

    Article  CAS  Google Scholar 

  19. Trevin S, Bedioui F, Devynck J (1996) New electropolymerized nickel porphyrin films. Application to the detection of nitric oxide in aqueous solution. J Electroanal Chem 408:261–265

    Article  Google Scholar 

  20. Alvarez MN, Trujillo M, Radi R (2002) Peroxynitrite formation from biochemical and cellular fluxes of nitric oxide and superoxide. Methods Enzymol 359:353–366

    Article  CAS  Google Scholar 

  21. Santos VN, Cabral MF, Ferreira JS, Holanda AKM, Machado SAS, Sousa JR, Lopes LGF, Correia AN, Neto PL (2011) Study of a gold electrode modified by trans-[Ru(NH3)4(Ist)SO4]+ to produce an electrochemical sensor for nitric oxide. Electrochim Acta 56:5686–5692

    Article  CAS  Google Scholar 

  22. Balamurugan M, Madasamy T, Pandiaraj M, Bhargava K, Sethy NK, Karunakaran C (2015) Electrochemical assay for the determination of nitric oxide metabolites using copper(II) chlorophyllin modified screen printed electrodes. Anal Biochem 478:121–127

    Article  CAS  Google Scholar 

  23. Kannan P, John SA (2010) Highly sensitive electrochemical determination of nitric oxide using fused spherical gold nanoparticles modified ITO electrode. Electrochim Acta 55:3497–3503

    Article  CAS  Google Scholar 

  24. Santos VN, Cabral MF, Ferreira JS, Holanda AKM, Machado SAS, Sousa JR, Lopes LGF, Correia AN, Neto PL (2013) Electrochemical and Monte Carlo studies of self-assembled trans-[Fe(cyclam)(NCS) 2]+ complex ion on gold surface as electrochemical sensor for nitric oxide. Electrochim Acta 91:1–10

    Article  CAS  Google Scholar 

  25. Ting SL, Guo CX, Leong KC, Kim DH, Li CM, Chen P (2013) Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide. Electrochim Acta 111:441–446

    Article  CAS  Google Scholar 

  26. Zhang L, Ni YH, Wang XH, Zhao GC (2010) Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite. Talanta 82:196–201

    Article  CAS  Google Scholar 

  27. Deng XC, Wang F, Chen ZL (2010) A novel electrochemical sensor based on nano-structured film electrode for monitoring nitric oxide in living tissues. Talanta 82:1218–1224

    Article  CAS  Google Scholar 

  28. Yan Y, Yao PP, Mu Q, Wang L, Mu J, Li XQ, Kang SZ (2011) Electrochemical behavior of amino-modified multi-walled carbon nanotubes coordinated with cobalt porphyrin for the oxidation of nitric oxide. Appl Surf Sci 258:58–63

    Article  CAS  Google Scholar 

  29. Peng YF, Hu CG, Zheng DY, Hu SS (2008) A sensitive nitric oxide microsensor based on PBPB composite film-modified carbon fiber microelectrode. Sens Actuators B 133:571–576

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Nature Science Foundation of China (Nos. 31070885; 61178087), the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (Nos. CZY14017; CTZ12001), the Scientific Research Team Project of South-central University for Nationalities (No. XTZ09002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Liu or Shengshui Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Liu, X., Zhu, S. et al. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite. Microchim Acta 182, 2403–2410 (2015). https://doi.org/10.1007/s00604-015-1561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1561-1

Keywords

Navigation