Skip to main content

Advertisement

Log in

Multiparametric diagnostics of cardiomyopathies by microRNA signatures

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The diagnosis of cardiomyopathies by endomyocardial biopsy analysis is the gold standard for confirmation of causative reasons but is failing if a sample does not contain the area of interest due to focal pathology. Biopsies are revealing an extract of the current situation of the heart muscle only, and the need for global organ-specific or systemic markers is obvious in order to minimize sampling errors. Global markers like specific gene expression signatures in myocardial tissue may therefore reflect the focal situation or condition of the whole myocardium. Besides gene expression profiles, microRNAs (miRNAs) represent a new group of stable biomarkers that are detectable both in tissue and body fluids. Such miRNAs may serve as cardiological biomarkers to characterize inflammatory processes, to confirm viral infections, and to differentiate various forms of infection. The predictive power of single miRNAs for diagnosis of complex diseases may be further increased if several distinctly deregulated candidates are combined to form a specific miRNA signature. Diagnostic systems that generate disease-related miRNA profiles are based on microarrays, bead-based oligo sorbent assays, or on assays based on real-time polymerase chain reactions and placed on microfluidic cards or nanowell plates. Multiparametric diagnostic systems that can measure differentially expressed miRNAs may become the diagnostic tool of the future due to their predictive value with respect to clinical course, therapeutic decisions, and therapy monitoring. We discuss here specific merits, limitations and the potential of currently available analytical platforms for diagnostics of heart muscle diseases based on miRNA profiling. Contains 34 references.

Modern diagnostics of cardiomyopathies will include multiparametric analysis of microRNA profiles in endomyocardial biopsies by real-time PCR or bead-based OLISA techniques. In contrast to high-throughput screening technologies diagnostic systems are realized by down-scaling sample volumes and simultaneous measurement of a limited number of stable disease related parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schultheiss HP, Kühl U, Cooper LT (2011) The management of myocarditis. Eur Heart 32:2616–2625

    Article  Google Scholar 

  2. Caforio AL1, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, Fu M, Heliö T, Heymans S, Jahns R, Klingel K, Linhart A, Maisch B, McKenna W, Mogensen J, Pinto YM, Ristic A, Schultheiss HP, Seggewiss H, Tavazzi L, Thiene G, Yilmaz A, Charron P, Elliott PM, European Society of Cardiology Working Group on Myocardial and Pericardial Diseases (2013) Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 34(33):2636–2648. doi:10.1093/eurheartj/eht210, 2648a-2648d

    Article  Google Scholar 

  3. Kühl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, Schultheiss HP (2005) Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112(13):1965–1970

    Article  Google Scholar 

  4. Kuhl U, Lassner D, Dorner A, Rohde M, Escher F, Seeberg B, Hertel E, Tschope C, Skurk C, Gross UM, Schultheiss HP, Poller W (2013) A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression. Basic Res Cardiol 108(5):372. doi:10.1007/s00395-013-0372

    Article  CAS  Google Scholar 

  5. Lassner D, Kühl U, Siegismund CS, Rohde M, Elezkurtaj S, Escher F, Tschöpe C, Gross U M, Poller W, Schultheiss H-P (2014) improved diagnosis of idiopathic giant cell myocarditis and cardiac sarcoidosis by myocardial gene expression profiling. Eur Heart J. doi:10.1093/eurheartj/ehu101

  6. Lassner D, Siegismund CS, Stehr J, Rohde M, Escher F, Tschöpe C, Gross UM, Kühl U, Schultheiss H-P (2013) Recent advances in molecular diagnostics and treatment of heart muscle diseases—from biopsy-focused to systemic diagnostics. JASMI 3(2):98–109. doi:10.4236/jasmi.2013.32012

    Article  Google Scholar 

  7. Thum T, Catalucci D, Bauersachs J (2008) MiRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 79(4):562–570. doi:10.1093/cvr/cvn137

    Article  CAS  Google Scholar 

  8. Zampetaki A, Mayr M (2012) MiRNAs in vascular and metabolic disease. Circ Res 110(3):508–522. doi:10.1161/CIRCRESAHA.111.247445

    Article  CAS  Google Scholar 

  9. Leptidis S, El Azzouzi H, Lok SI, de Weger R, Olieslagers S, Kisters N, Silva GJ, Heymans S, Cuppen E, Berezikov E, De Windt LJ, da Costa Martins P (2013) A deep sequencing approach to uncover the miRNOME in the human heart. PLoS One 8(2):e57800. doi:10.1371/journal.pone.0057800

    Article  CAS  Google Scholar 

  10. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT (2007) Altered microRNA expression in human heart disease. Physiol Genomics 31(3):367–373

    Article  CAS  Google Scholar 

  11. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of miRNAs on protein output. Nature 455(7209):64–71

    Article  CAS  Google Scholar 

  12. Adam O, Löhfelm B, Thum T, Gupta SK, Puhl SL, Schäfers HJ, Böhm M, Laufs U (2012) Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol 107(5):278. doi:10.1007/s00395-012-0278-0

    Article  Google Scholar 

  13. Wittchen F, Suckau L, Witt H, Skurk C, Lassner D, Fechner H, Sipo I, Ungethüm U, Ruiz P, Pauschinger M, Tschope C, Rauch U, Kühl U, Schultheiss HP, Poller W (2007) Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. J Mol Med (Berl) 85(3):257–271

    Article  CAS  Google Scholar 

  14. Kühl U, Rohde M, Lassner D, Gross UM, Escher F, Schultheiss HP (2012) miRNA as activity markers in Parvo B19 associated heart disease. Herz 37(6):637–643

    Article  Google Scholar 

  15. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  Google Scholar 

  16. Jaguszewski M1, Osipova J, Ghadri JR, Napp LC, Widera C, Franke J, Fijalkowski M, Nowak R, Fijalkowska M, Volkmann I, Katus HA, Wollert KC, Bauersachs J, Erne P, Lüscher TF, Thum T, Templin C (2013) A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J

  17. Puerta-Gil P, Garcia-Baquero R, Jia AY, Ocana S, Alvarez-Mugica M, Alvarez-Ossorio JL, Cordon-Cardo C, Cava F, Sanchez-Carbayo M (2012) miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. Am J Pathol 180(5):1808–1815. doi:10.1016/j.ajpath.2012.01.034

    Article  CAS  Google Scholar 

  18. Torres A, Torres K, Pesci A, Ceccaroni M, Paszkowski T, Cassandrini P, Zamboni G, Maciejewski R (2013) Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int J Cancer 132(7):1633–1645

    Article  CAS  Google Scholar 

  19. Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A, Tembe W, Kim S, Metpally R, Van Keuren-Jensen K (2013) Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 19(5):712–722. doi:10.1261/rna.036863

    Article  CAS  Google Scholar 

  20. Haukeland JW, Schreiner LT, Lorgen I, Frigstad SO, Bang C, Raknerud N, Konopski Z (2008) ASAT/ALAT ratio provides prognostic information independently of Child-Pugh class, gender and age in non-alcoholic cirrhosis. Scand J Gastroenterol 43(10):1241–1248. doi:10.1080/00365520802158614

    Article  CAS  Google Scholar 

  21. Gupta MK, Halley C, Duan ZH, Lappe J, Viterna J, Jana S, Augoff K, Mohan ML, Vasudevan NT, Na J, Sossey-Alaoui K, Liu X, Liu CG, Tang WH, Naga Prasad SV (2013) miRNA-548c: a specific signature in circulating PBMCs from dilated cardiomyopathy patients. J Mol Cell Cardiol 62:131–141. doi:10.1016/j.yjmcc.2013.05.011

    Article  CAS  Google Scholar 

  22. Cappuzzello C, Napolitano M, Arcelli D, Melillo G, Melchionna R, Di Vito L, Carlini D, Silvestri L, Brugaletta S, Liuzzo G, Crea F, Capogrossi MC (2009) Gene expression profiles in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 38(3):233–240. doi:10.1152/physiolgenomics.90364.2008

    Article  CAS  Google Scholar 

  23. Corsten MF1, Papageorgiou A, Verhesen W, Carai P, Lindow M, Obad S, Summer G, Coort SL, Hazebroek M, van Leeuwen R, Gijbels MJ, Wijnands E, Biessen EA, De Winther MP, Stassen FR, Carmeliet P, Kauppinen S, Schroen B, Heymans S (2012) MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ Res 111(4):415–425. doi:10.1161/CIRCRESAHA.112.267443

    Article  CAS  Google Scholar 

  24. Kellar KL, Kalwar RR, Dubois KA, Crouse D, Chafin WD, Kane BE (2001) Multiplexed fluorescent bead-based immunoassays for quantitation of human cytokines in serum and culture supernatants. Cytometry 45(1):27–36

    Article  CAS  Google Scholar 

  25. Willitzki A, Hiemann R, Peters V, Sack U, Schierack P, Rödiger S, Anderer U, Conrad K, Bogdanos DP, Reinhold D, Roggenbuck D (2012) New platform technology for comprehensive serological diagnostics of autoimmune diseases. Clin Dev Immunol. doi:10.1155/2012/284740

    Google Scholar 

  26. Pichon JP, Bonnaud B, Cleuziat P, Mallet F (2006) Multiplex degenerate PCR coupled with an oligo sorbent array for human endogenous retrovirus expression profiling. Nucleic Acids Res 34(6):e46

    Article  Google Scholar 

  27. Hurley J, Roberts D, Bond A, Keys D, Chen C (2012) Stem-loop RT-qPCR for miRNA expression profiling. Methods Mol Biol 822:33–52. doi:10.1007/978-1-61779-427-8_3

    Article  CAS  Google Scholar 

  28. Grigorenko EV, Ortenberg E, Hurley J, Bond A, Munnelly K (2011) miRNA profiling on high-throughput OpenArray™ system. Methods Mol Biol 676:101–110. doi:10.1007/978-1-60761-863-8_8

    Article  CAS  Google Scholar 

  29. Yu Z, Zhu Y, Zhang Y, Li J, Fang Q, Xi J, Yao B (2011) Nanoliter droplet array for microRNA detection based on enzymatic stem-loop probes ligation and SYBR green real-time PCR. Talanta. doi:10.1016/j.talanta.2011.06.075

    Google Scholar 

  30. Kurn N, Chen P, Heath JD, Kopf-Sill A, Stephens KM, Wang S (2005) Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem 51(10):1973–1981

    Article  CAS  Google Scholar 

  31. Noutsias M, Rohde M, Block A, Klippert K, Lettau O, Blunert K, Hummel M, Kühl U, Lehmkuhl H, Hetzer R, Rauch U, Poller W, Pauschinger M, Schultheiss HP, Volk HD, Kotsch K (2008) Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies. BMC Mol Biol 9:3. doi:10.1186/1471-2199-9-3

    Article  Google Scholar 

  32. Ansorge WJ (2009) Next-generation DNA sequencing techniques. N Biotechnol 25(4):195–203. doi:10.1016/j.nbt.2008.12.009

    Article  CAS  Google Scholar 

  33. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876. doi:10.1038/nature06884

    Article  CAS  Google Scholar 

  34. Keller A, Leidinger P, Steinmeyer F, Stähler C, Franke A, Hemmrich-Stanisak G, Kappel A, Wright I, Dörr J, Paul F, Diem R, Tocariu-Krick B, Meder B, Backes C, Meese E, Ruprecht K (2013) Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler

Download references

Acknowledgments

This work was supported by grants of the German Research Foundation (DFG), Transregional Collaborative Research Centre “Inflammatory Cardiomyopathy - Molecular Pathogenesis and Therapy” (SFB TR19, Z1), and two grants of the Federal Ministry of Education and Research (BMBF, Germany) for KMU innovative program (No.616 0315296, 0316141A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Lassner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegismund, C.S., Rohde, M., Kühl, U. et al. Multiparametric diagnostics of cardiomyopathies by microRNA signatures. Microchim Acta 181, 1647–1653 (2014). https://doi.org/10.1007/s00604-014-1249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1249-y

Keywords

Navigation