Skip to main content
Log in

Encapsulation of horseradish peroxidase into hydrogel, and its bioelectrochemistry

Microchimica Acta Aims and scope Submit manuscript

Abstract

A biohybrid hydrogel is fabricated by integrating horseradish peroxidase (HRP) with polyhydroxyl cellulose (PHC), which is prepared by mixing of poly(vinyl alcohol) and carboxymethyl hydroxyethyl cellulose. PHC provides a biocompatible microenvironment for HRP, and the UV-vis spectrum indicates that the confromation of HRP-loaded biohydrogel is well retained relative to free HRP. Based on the direct electrochemistry and electrocatalytic ability of HRP, a third-generation H2O2 biosensor is developed. Under the optimized conditions, the H2O2 biosensor shows a linear response over the range from 1.0 μM to 1.0 mM with a detection limit (S/N = 3) of 0.5 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345

    Article  CAS  Google Scholar 

  2. Dong L, Agarwal AK, Beebe DJ, Jiang HR (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551

    Article  CAS  Google Scholar 

  3. Castellanos A, DuPont SJ, Heim AJ, Matthews G, Stroot PG, Moreno W, Toomey RG (2007) Size-exclusion “capture and release” separations using surface-patterned poly(N-isopropylacrylamide) hydrogels. Langmuir 23:6391

    Article  Google Scholar 

  4. Patton JN, Palmer AF (2005) Engineering temperature-sensitive hydrogel nanoparticles entrapping hemoglobin as a novel type of oxygen carrier. Biomacromolecules 6:2204

    Article  CAS  Google Scholar 

  5. Wu XJ, Choi MMF (2003) Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Anal Chem 75:4019

    Article  CAS  Google Scholar 

  6. Wu XJ, Choi MMF (2004) Spongiform immobilization architecture of ionotropy polymer hydrogel coentrapping alcohol oxidase and horseradish peroxidase with octadecylsilica for optical biosensing alcohol in organic solvent. Anal Chem 76:4279

    Article  CAS  Google Scholar 

  7. Derwinska K, Sauer U, Preininger C (2007) Reproducibility of hydrogel slides in on-chip immunoassays with respect to scanning mode, spot circularity, and data filtering. Anal Biochem 370:38

    Article  CAS  Google Scholar 

  8. Yoshimura I, Miyahara Y, Kasagi N, Yamane H, Ojida A, HamachiI (2004) Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip. J Am Chem Soc 126:12204

    Article  CAS  Google Scholar 

  9. Dominguez MM, Wathier M, Grinstaff MW, Schaus SE (2007) Immobilized hydrogels for screening of molecular interactions. Anal Chem 79:1064

    Article  CAS  Google Scholar 

  10. Chen HM, Lin CW (2007) Hydrogel-coated streptavidin piezoelectric biosensors and applications to selective detection of strep-tag displaying cells. Biotechnol Prog 23:741

    Article  CAS  Google Scholar 

  11. Chaplin MF, Bucke C (1990) Enzyme technology. Cambridge University Press, Cambridge

    Google Scholar 

  12. Mano N, Soukharev V, Heller A (2006) A laccase-wiring redox hydrogel for efficient catalysis of O2 electroreduction. J Phys Chem B 110:11180

    Article  CAS  Google Scholar 

  13. Dong SJ, Guo YZ (1994) Organic phase enzyme electrode operated in water-free solvents. Anal Chem 66:3895

    Article  CAS  Google Scholar 

  14. Sun YX, Zhang JT, Huang SW, Wang SF (2007) Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film. Sens Actuators B 124:494

    Article  Google Scholar 

  15. Wang SF, Chen T, Zhang ZL, Shen XC, Lu ZX, Pang DW, Wong KY (2005) Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21:9260

    Article  CAS  Google Scholar 

  16. Shen L, Huang R, Hu NF (2002) Myoglobin in polyacrylamide hydrogel films: direct electrochemistry and electrochemical catalysis. Talanta 56:1131

    Article  CAS  Google Scholar 

  17. Zeng XD, Wei WZ, Li XF, Zeng JX, Wu L (2007) Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Bioelectrochemistry 71:135

    Article  CAS  Google Scholar 

  18. Knaus S, Bauer-Heim B (2003) Synthesis and properties of anionic cellulose ethers: influence of functional groups and molecular weight on flow ability of concrete. Carbohydr Polym 53:383

    Article  CAS  Google Scholar 

  19. Colthup NB, Daly LH, Wiberly SE (1990) Introduction to infrared and raman spectroscopy, 3rd edn. Academic, New York, p 332

    Google Scholar 

  20. Cai H, Zhang ZP, Sun PC, He BL, Zhu XX (2005) Synthesis and characterization of thermo- and pH- sensitive hydrogels based on chitosan-grafted N-isopropylacrylamide via γ-radiation. Radiat Phys Chem 74:26

    Article  CAS  Google Scholar 

  21. Rusling JF (1998) Enzyme bioelectrochemistry in cast biomembrane-like films. Acc Chem Res 31:363

    Article  CAS  Google Scholar 

  22. Yan R, Zhao FQ, Li JW, Xiao F, Fan SS, Zeng BZ (2007) Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films. Electrochim Acta 52:7425

    Article  CAS  Google Scholar 

  23. Xu Y, Peng W, Liu X, Li G (2004) A new film for the fabrication of an unmediated H2O2 biosensor. Biosens Bioelectron 20:533

    Article  CAS  Google Scholar 

  24. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  25. Li YM, Chen XT, Li J, Liu HH (2004) Direct voltammetry and catalysis of hemoenzymes in methyl cellulose film. Electrochim Acta 49:3195

    Article  CAS  Google Scholar 

  26. Bond AM (1980) Modern polarographic methods in analytical chemistry. Marcel Dekker, New York, p 27

    Google Scholar 

  27. Bard AJ (1986) Electronanalytical chemistry, vol 13. Marcel Dekker, New York, p 191

    Google Scholar 

  28. Abad JM, Vélez M, Santamaría C, Guisán JM, Matheus PR, Vázquez L, Gazaryan I, Gorton L, Gibson T, Fernández VM (2002) Immobilization of peroxidase glycoprotein on gold electrodes modified with epoxy-boronic acid monolayers. J Am Chem Soc 124:12845

    Article  CAS  Google Scholar 

  29. Liu H, Tian Z, Lu Z, Zhang Z, Zhang M, Pang D (2004) Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosens Bioelectron 20:294

    Article  CAS  Google Scholar 

  30. Chen X, Peng X, Kong J, Deng J (2000) Facilitated electron transfer from an electrode to horseradish peroxidase in a biomembrane-like surfactant film. J Electroanal Chem 480:26

    Article  CAS  Google Scholar 

  31. Fenwick CW, English AM, Wishart JF (1997) pH and driving force dependence of intramolecular oxyferryl heme reduction in myoglobin. J Am Chem Soc 119:4758

    Article  CAS  Google Scholar 

  32. Kamin RA, Willson GS (1980) Rotation ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198

    Article  CAS  Google Scholar 

  33. Liu SQ, Ju HX (2002) Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal Biochem 307:110

    Article  CAS  Google Scholar 

  34. Chen HJ, Dong, SJ 2007 Biosen Bioelectron 22:1811

    Article  CAS  Google Scholar 

  35. Xu Q, Mao C, Liu NN, Zhu JJ, Sheng J (2006) Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan–gold nanoparticle nanocomposite. Biosen Bioelectron 22:768

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work supported by Shanghai Municipal Education Commission (No. 08ZZ25) and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (No. JSKC07037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuezhong Xian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Wang, L., Hu, Z. et al. Encapsulation of horseradish peroxidase into hydrogel, and its bioelectrochemistry. Microchim Acta 164, 49–54 (2009). https://doi.org/10.1007/s00604-008-0030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0030-5

Keywords

Navigation