Skip to main content
Log in

Arsenic Speciation Analysis in Solutions Treated with Zeolites

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract.

Experiments have been carried out to study the behaviour of organoarsenicals treated with zeolites by means of speciation analysis. IC-ICP-MS was applied to identify and quantify arsenite, arsenate and the following organoarsenicals: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium bromide (TMA+), arsenobetaine (AsB) and arsenocholine (AsC). Zeolites loaded with ferrous ions did not significantly increase the retention of inorganic arsenic species compared to the native zeolites, while there was a ten-fold removal of arsenate relating to arsenite. The formation of As(V) and DMA in the leachates containing clinoptilolites and mordenites was confirmed in the presence of natural and synthetic zeolites. Arsenobetaine and arsenocholine yielded higher levels of arsenate than the methylated species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P L Smedley D G Kinniburgh (2002) Appl Geochem 17 517 Occurrence Handle1:CAS:528:DC%2BD38XhvVSmur0%3D Occurrence Handle10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • M A Ferreira A A Barros (2002) Anal Chim Acta 459 151 Occurrence Handle1:CAS:528:DC%2BD38XjsVWit7o%3D Occurrence Handle10.1016/S0003-2670(02)00086-7

    Article  CAS  Google Scholar 

  • J V Rios-Arana E J Walsh J L Gardea-Torresdey (2003) Environ Int 29 957 Occurrence Handle10.1016/S0160-4120(03)00080-1 Occurrence Handle1:CAS:528:DC%2BD3sXosVKltr4%3D

    Article  CAS  Google Scholar 

  • L M Del Razo G G Garcia-Vargas J Garcia-Salcedo M F Sanmiguel M Rivera M C Hernandez M E Cebrian (2002) Food Chem Toxicol 40 1423 Occurrence Handle1:CAS:528:DC%2BD38Xmsl2qtr4%3D Occurrence Handle10.1016/S0278-6915(02)00074-1

    Article  CAS  Google Scholar 

  • T Nakazato H Tao T Taniguchi K Isshiki (2002) Talanta 58 121 Occurrence Handle1:CAS:528:DC%2BD38XlvVGnsb4%3D Occurrence Handle10.1016/S0039-9140(02)00261-8

    Article  CAS  Google Scholar 

  • V M Dembitsky T Rezanka (2003) Plant Sci 165 1177 Occurrence Handle1:CAS:528:DC%2BD3sXos1KntLw%3D Occurrence Handle10.1016/j.plantsci.2003.08.007

    Article  CAS  Google Scholar 

  • W Goessler A Rudorfer E A Mackey P R Becker K J Irgolic (1998) Appl Organometal Chem 12 491 Occurrence Handle1:CAS:528:DyaK1cXkvValsbc%3D Occurrence Handle10.1002/(SICI)1099-0739(199807)12:7<491::AID-AOC740>3.0.CO;2-6

    Article  CAS  Google Scholar 

  • J A Brisbin C B’Hymer J A Caruso (2002) Talanta 58 133 Occurrence Handle1:CAS:528:DC%2BD38XlvVGnsb8%3D Occurrence Handle10.1016/S0039-9140(02)00262-X

    Article  CAS  Google Scholar 

  • D M Templeton F Ariese R Cornelis L-G Danielson H Muntau H P Van Leeuwen R Łobiński (2000) Pure Appl Chem 72 1453 Occurrence Handle1:CAS:528:DC%2BD3MXis1Gq

    CAS  Google Scholar 

  • Yamauchi H, Fowler B A (1994) Biotransformation of arsenic in the marine environment. In: Nriagu J O (ed) Human health and ecosystems effects, part II of toxicity and metabolism of inorganic and methylated arsenicals. John Wiley, New York, p 44

  • A Kot J Namiesńik (2000) TRAC 19 69 Occurrence Handle1:CAS:528:DC%2BD3cXhsFCnu7c%3D

    CAS  Google Scholar 

  • I Ipolyi P Fodor (2000) Anal Chim Acta 413 13 Occurrence Handle1:CAS:528:DC%2BD3cXivVCqtro%3D Occurrence Handle10.1016/S0003-2670(00)00817-5

    Article  CAS  Google Scholar 

  • M Bissen F H Frimmel (2000) Fresenius J Anal Chem 367 51 Occurrence Handle1:CAS:528:DC%2BD3cXisVGltLk%3D Occurrence Handle10.1007/s002160051597

    Article  CAS  Google Scholar 

  • I Ali H Y Aboul-Enein (2002) Chemosphere 48 275 Occurrence Handle1:CAS:528:DC%2BD38XktVCntrs%3D Occurrence Handle10.1016/S0045-6535(02)00085-1

    Article  CAS  Google Scholar 

  • I Pizarro M Gómez C Cámara M A Palacios (2003) Anal Chim Acta 495 85 Occurrence Handle1:CAS:528:DC%2BD3sXnvFGhtbg%3D Occurrence Handle10.1016/j.aca.2003.08.009

    Article  CAS  Google Scholar 

  • S Londesborough J Mattusch R Wennrich (1999) Fresenius J Anal Chem 363 577 Occurrence Handle1:CAS:528:DyaK1MXhvFGmtrk%3D Occurrence Handle10.1007/s002160051251

    Article  CAS  Google Scholar 

  • S Wangkarn S A Pergantis (2000) J Anal At Spectrom 15 627 Occurrence Handle1:CAS:528:DC%2BD3cXjslWksLo%3D Occurrence Handle10.1039/b001810o

    Article  CAS  Google Scholar 

  • S Simon H Tran F Pannier M Potin-Gautier (2004) J Chromatogr A 1024 105 Occurrence Handle1:CAS:528:DC%2BD3sXps1Omt7c%3D Occurrence Handle10.1016/j.chroma.2003.09.068

    Article  CAS  Google Scholar 

  • D Schlegel J Mattusch K Dittrich (1994) J Chromatogr A 683 261 Occurrence Handle1:CAS:528:DyaK2cXmsleqtb4%3D Occurrence Handle10.1016/S0021-9673(94)89123-0

    Article  CAS  Google Scholar 

  • D Schlegel J Mattusch R Wennrich (1996) Fresenius J Anal Chem 354 535 Occurrence Handle1:CAS:528:DyaK28XitVens70%3D

    CAS  Google Scholar 

  • T Kaise K Hanaoka S Tagawa (1987) Chemosphere 16 2551 Occurrence Handle1:CAS:528:DyaL1cXptFGnsQ%3D%3D Occurrence Handle10.1016/0045-6535(87)90313-4

    Article  CAS  Google Scholar 

  • R O Jenkins A W Ritchie J S Edmonds W Goessler N Molenat D Kuehnelt C F Harrington P G Sutton (2003) Arch Microbiol 180 142 Occurrence Handle1:CAS:528:DC%2BD3sXls1ygs7Y%3D Occurrence Handle10.1007/s00203-003-0569-9

    Article  CAS  Google Scholar 

  • K Hanaoka H Koga S Tagawa T Kaise (1992) Comp Biochem Phys B 101 595 Occurrence Handle10.1016/0305-0491(92)90345-R

    Article  Google Scholar 

  • M Köhler K Hofmann F Völsgen K Thurow A Koch (2001) Chemosphere 42 425 Occurrence Handle10.1016/S0045-6535(00)00060-6

    Article  Google Scholar 

  • J P Quinn G McMullan (1995) Microbiology 141 721 Occurrence Handle1:CAS:528:DyaK2MXksVeis7Y%3D Occurrence Handle10.1099/13500872-141-3-721

    Article  CAS  Google Scholar 

  • M P Elizalde-González J Mattusch R Wennrich (2002) Appl Organometal Chem 16 9 Occurrence Handle10.1002/aoc.251 Occurrence Handle1:CAS:528:DC%2BD38XmslOgtw%3D%3D

    Article  CAS  Google Scholar 

  • Bonnin D (1997) Proc Annu Conf Am Water Works Assoc 421

  • Y Xu T Nakajima A Ohki (2002) J Hazard Mat B92 275 Occurrence Handle10.1016/S0304-3894(02)00020-1

    Article  Google Scholar 

  • M P Elizalde-González J Mattusch W D Einicke R Wennrich (2001) Chem Eng J 81 187 Occurrence Handle10.1016/S1385-8947(00)00201-1

    Article  Google Scholar 

  • M P Elizalde-González J Mattusch R Wennrich P Morgenstern (2001) Micropor Mesopor Mater 46 277 Occurrence Handle10.1016/S1387-1811(01)00308-0

    Article  Google Scholar 

  • Bonnin D, Tampa F (2000) Method of removing arsenic species from an aqueous medium using modified zeolite minerals, Patent US6,042,731

  • S Shevade R G Ford (2004) Water Res 38 3197 Occurrence Handle1:CAS:528:DC%2BD2cXlvFaltb0%3D Occurrence Handle10.1016/j.watres.2004.04.026

    Article  CAS  Google Scholar 

  • Gomez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis D R, Moore M, Ng J, Aitio A, Becking G (2001) Arsenic and arsenic compounds, WHO, 2nd edn, Geneva. http://www.inchem.org/documents/ehc/ehc/ehc224.htm#4.2.3.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María P. Elizalde-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elizalde-González, M., Mattusch, J. & Wennrich, R. Arsenic Speciation Analysis in Solutions Treated with Zeolites. Microchim Acta 151, 257–262 (2005). https://doi.org/10.1007/s00604-005-0413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-005-0413-9

Navigation