Skip to main content

Advertisement

Log in

Using Velocities, Density, and Bulk Modulus to Predict the Permeability Evolution of Microfractured Rocks

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Thermal fracturing in reservoir rocks can cause significant increase in permeability. The change in permeability due to fracturing was predicted using the change in elastic wave velocity, density, and elastic moduli. Westerly granite samples were thermally treated to 250, 450, 650 and 850 °C. Increasing the temperature produces an increase in fracture length, aperture and density that is isotropically distributed. The permeability was measured at 10, 30 and 50 MPa effective pressure using deionized water as the pore fluid. The permeability was correlated to P- and S-wave velocities, bulk density, and static bulk modulus that were measured at similar effective pressures on the same suite of samples. Kachanov’s (Elastic solids with many cracks and related problems, in: John, Theodore (eds) Advances in applied mechanics, Elsevier, pp 259–445, 1994) model was used to calculate the evolution of fracture density. Closure of fracture, due to increasing effective pressure, caused the permeability and fracture density to decrease, and the other parameters to increase. Thermal treatment caused a systematic increase in permeability and fracture density, and a decrease in the other parameters. Empirical relationships with high correlation coefficient exist between permeability and the other parameters for both dry and saturated conditions, which vary with effective pressure. Overall, we conclude that the elastic wave velocity, density and bulk modulus can be used to predict the change in permeability due to isotropic fracturing. However, a reliable method would be required to upscale these laboratory measurements for modelling and describing the permeability within a granitic reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

α inverted :

Inverted fracture density

α measured :

Measured fracture density

c i :

Radius of the ith fracture

N :

Total number of fractures

V :

Representative elementary volume

E o :

Young’s modulus of the ‘fracture free’ matrix

E * :

Effective Young’s modulus

ν o :

Poisson’s ratio of the ‘fracture free’ matrix

δ :

Saturation parameter

k :

Permeability

V p :

P-wave velocity

V s :

S-wave velocity

L :

Length of the sample

T :

Travel time of the P- or S-waves

ρ :

Bulk density

K static :

Static bulk modulus

ρ :

Density of the sample

References

  • Adam L, Batzle M (2008) Elastic properties of carbonates from laboratory measurements at seismic and ultrasonic frequencies. Lead Edge 27(8):1026–1032. https://doi.org/10.1190/1.2967556

    Article  Google Scholar 

  • Adelinet M, Fortin J, Guéguen Y, Schubnel A, Geoffroy L (2010) Frequency and fluid effects on elastic properties of basalt: experimental investigations. Geophys Res Lett 37(2):L02303. https://doi.org/10.1029/2009gl041660

    Article  Google Scholar 

  • Armitage PJ, Faulkner DR, Worden RH, Aplin AC, Butcher AR, Iliffe J (2011) Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria. J Geophys Res 116(B12):B12208. https://doi.org/10.1029/2011jb008385

    Article  Google Scholar 

  • Batzle M, Hofmann R, Han D-H, Castagna J (2001) Fluids and frequency dependent seismic velocity of rocks. Lead Edge 20(2):168–171. https://doi.org/10.1190/1.1438900

    Article  Google Scholar 

  • Batzle M, Han DH, Hofmann R (2006) Fluid mobility and frequency-dependent seismic velocity—direct measurements. Geophysics 71(1):N1–N9

    Google Scholar 

  • Beard D, Weyl P (1973) Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bull 57(2):349–369

    Google Scholar 

  • Benson P, Schubnel A, Vinciguerra S, Trovato C, Meredith P, Young RP (2006) Modeling the permeability evolution of microcracked rocks from elastic wave velocity inversion at elevated isostatic pressure. J Geophys Res 111:B04202. https://doi.org/10.1029/2005JB003710

    Article  Google Scholar 

  • Berg RR (1970) Method for determining permeability from reservoir rock properties. Gulf Coast Assoc Geol Soc Trans 20:303–317

    Google Scholar 

  • Bernabe Y (1986) The effective pressure law for permeability in Chelmsford granite and Barre granite. Int J Rock Mech Min Sci Geomech Abstr 23(3):267–275. https://doi.org/10.1016/0148-9062(86)90972-1

    Article  Google Scholar 

  • Blake OO, Faulkner DR (2016) The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite. J Geophys Res Solid Earth 121(4):2382–2399. https://doi.org/10.1002/2015JB012310

    Article  Google Scholar 

  • Blake OO, Faulkner DR, Rietbrock A (2013) The effect of varying damage history in crystalline rocks on the P- and S-wave velocity under hydrostatic confining pressure. Pure Appl Geophys 170(4):493–505. https://doi.org/10.1007/s00024-012-0550-0

    Article  Google Scholar 

  • Blake OO, Faulkner DR, Tatham DJ (2019) The role of fractures, effective pressure and loading on the difference between the static and dynamic Poisson's ratio and Young's modulus of Westerly granite. Int J Rock Mech Min 116:87–98. https://doi.org/10.1016/j.ijrmms.2019.03.001

    Article  Google Scholar 

  • Bloch S (1991) Empirical prediction of porosity and permeability in sandstones (1). AAPG Bull 75(7):1145–1160

    Google Scholar 

  • Brace WF (1965) Some new measurements of linear compressibility of rocks. J Geophys Res 70(2):391–398

    Google Scholar 

  • Brace WF, Walsh J, Frangos W (1968) Permeability of granite under high pressure. J Geophys Res 73(6):2225–2236

    Google Scholar 

  • Calò M, Dorbath C, Cornet F, Cuenot N (2011) Large-scale aseismic motion identified through 4-DP-wave tomography. Geophys J Int 186(3):1295–1314

    Google Scholar 

  • Carman PC (1937) Fluid flow through granular beds. Inst Chem Eng Trans 15:150–166

    Google Scholar 

  • Cheng CH, Johnston DH (1981) Dynamic and static moduli. Geophys Res Lett 8(1):39–42. https://doi.org/10.1029/GL008i001p00039

    Article  Google Scholar 

  • Chilingar G (1964) Relationship between porosity, permeability and grain size distribution of sands and sandstones. In: Deltac and shallow marine deposits, pp 71–75

  • Cooper HW, Simmons G (1977) The effect of cracks on the thermal expansion of rocks. Earth Planet Sci Lett 36(3):404–412. https://doi.org/10.1016/0012-821X(77)90065-6

    Article  Google Scholar 

  • Doyen PM (1988) Permeability, conductivity, and pore geometry of sandstone. J Geophys Res Solid Earth 93(B7):7729–7740

    Google Scholar 

  • Ehrlich R, Crabtree SJ, Horkowitz KO, Horkowitz JP (1991) Petrography and reservoir physics I: objective classification of reservoir porosity. AAPG Bull 75(10):1547–1562

    Google Scholar 

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19(11):1393–1404. https://doi.org/10.1016/S0191-8141(97)00057-6

    Article  Google Scholar 

  • Faulkner DR, Rutter E (1998) The gas permeability of clay-bearing fault gouge at 20 °C. Geol Soc Lond Spec Publ 147(1):147–156

    Google Scholar 

  • Faulkner DR, Rutter E (2000) Comparisons of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20 °C. J Geophys Res Solid Earth 105(B7):16415–16426

    Google Scholar 

  • Glover PWJ, Baud P, Darot M, Meredith PG, Boon SA, LeRavalec M, Zoussi S, Reuschlé T (1995) α/β phase transition in quartz monitored using acoustic emissions. Geophys J Int 120(3):775–782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x

    Article  Google Scholar 

  • Griffiths L, Heap M, Baud P, Schmittbuhl J (2017) Quantification of microcrack characteristics and implications for stiffness and strength of granite. Int J Rock Mech Min 100:138–150

    Google Scholar 

  • Gueguen Y, Dienes J (1989) Transport properties of rocks from statistics and percolation. Math Geol 21(1):1–13

    Google Scholar 

  • Guéguen Y, Schubnel A (2003) Elastic wave velocities and permeability of cracked rocks. Tectonophysics 370(1):163–176. https://doi.org/10.1016/S0040-1951(03)00184-7

    Article  Google Scholar 

  • Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min 37(1–2):285–296

    Google Scholar 

  • Hammond JP, Ratcliff LT, Brinkman CR, Nestor JCW (1979) Dynamic and static measurements of elastic constants with data on 2 I/4 Cr-1 Mo steel, types 304 and 316 stainless steels, and alloy 800H, ORNL-5442. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Heap MJ, Vinciguerra S, Meredith P (2009) The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano. Tectonophysics 471(1):153–160

    Google Scholar 

  • Heap MJ, Villeneuve M, Albino F, Farquharson JI, Brothelande E, Amelung F, Got J-L, Baud P (2019) Towards more realistic values of elastic moduli for volcano modelling. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2019.106684

    Article  Google Scholar 

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min 43(2):203–215

    Google Scholar 

  • Jizba D (1991) Mechanical and acoustical properties of sandstones and shales. Stanford University, p 260

  • Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 176:379–402

    Google Scholar 

  • Kachanov M (1994) Elastic solids with many cracks and related problems. In: John WH, Theodore YW (eds) Advances in applied mechanics. Elsevier, pp 259–445

  • Kumari W, Ranjith P, Perera M, Shao S, Chen B, Lashin A, Al Arifi N, Rathnaweera T (2017) Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: an application to geothermal energy extraction. Geothermics 65:44–59

    Google Scholar 

  • Liu E, Hudson JA, Pointer T (2000) Equivalent medium representation of fractured rock. J Geophys Res Solid Earth 105(B2):2981–3000

    Google Scholar 

  • Liu J, Li B, Tian W, Wu X (2018) Investigating and predicting permeability variation in thermally cracked dry rocks. Int J Rock Mech Min 103:77–88

    Google Scholar 

  • Lockner DA (1998) A generalized law for brittle deformation of Westerly granite. J Geophys Res 103(B3):5107–5123

    Google Scholar 

  • Lockner DA, Walsh JB, Byerlee JD (1977) Changes in seismic velocity and attenuation during deformation of granite. J Geophys Res 82(33):5374–5378

    Google Scholar 

  • Mitchell TM, Faulkner DR (2008) Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones. J Geophys Res Solid Earth 113(B11)

  • Morrow CA, Zhang B-C, Byerlee JD (1986) Effective pressure law for permeability of westerly granite under cyclic loading. J Geophys Res Solid Earth 91(B3):3870–3876. https://doi.org/10.1029/JB091iB03p03870

    Article  Google Scholar 

  • Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review. Geophysics 75(5):75A147–175A164

    Google Scholar 

  • Nasseri MHB, Schubnel A, Young RP (2007) Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min 44(4):601–616. https://doi.org/10.1016/j.ijrmms.2006.09.008

    Article  Google Scholar 

  • Nasseri MHB, Schubnel A, Benson P, Young R (2009) Common evolution of mechanical and transport properties in thermally cracked westerly granite at elevated hydrostatic pressure. Pure Appl Geophys 166(5):927–948. https://doi.org/10.1007/s00024-009-0485-2

    Article  Google Scholar 

  • Niu Q, Zhang C (2019) Permeability prediction in rocks experiencing mineral precipitation and dissolution: a numerical study. Water Resour Res 55(4):3107–3121. https://doi.org/10.1029/2018wr024174

    Article  Google Scholar 

  • Nur A, Simmons G (1969) The effect of saturation on velocity in low porosity rocks. Earth Planet Sci Lett 7(2):183–193

    Google Scholar 

  • Peach CJ, Spiers CJ (1996) Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock. Tectonophysics 256(1):101–128. https://doi.org/10.1016/0040-1951(95)00170-0

    Article  Google Scholar 

  • Pérez-Flores P, Wang G, Mitchell TM, Meredith PG, Nara Y, Sarkar V, Cembrano J (2017) The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile. J Struct Geol 104:142–158. https://doi.org/10.1016/j.jsg.2017.09.015

    Article  Google Scholar 

  • Potter JM (1978) Experimental permeability studies at elevated temperature and pressure of granitic rocks. Rep. LA-7224T United States 10.2172/7042816 Dep. NTIS, PC A06/MF A01. LANL English, Medium: P; Size: Pages: 109 pp, Los Alamos Scientific Lab., N.Mex

  • Priest SD (1993) Discontinuity analysis for rock engineering. Springer Science & Business Media

  • Rezaee MR, Griffiths CM (1996) Pore geometry controls on porosity and permeability in the Tirrawarre Sandstone reservoir, Cooper basin, South Australia. In: AAPG bulletin, 5(CONF-960527)

  • Rosvoll KJ (1991) Permeability variations in sandstones and their relationship to sedimentary structures, Reservoir characterization II

  • Sayers CM, Kachanov M (1995) Microcrack-induced elastic wave anisotropy of brittle rocks. J Geophys Res 100(B3):4149–4156

    Google Scholar 

  • Schubnel A, Guéguen Y (2003) Dispersion and anisotropy of elastic waves in cracked rocks. J Geophys Res 108(B2):2101. https://doi.org/10.1029/2002jb001824

    Article  Google Scholar 

  • Schubnel A, Benson PM, Thompson BD, Hazzard JF, Young RP (2006) Quantifying damage, saturation and anisotropy in cracked rocks by inverting elastic wave velocities. Pure Appl Geophys 163(5):947–973

    Google Scholar 

  • Schwartz LM, Banavar JR (1989) Transport properties of disordered continuum systems. Phys Rev B 39(16):11965

    Google Scholar 

  • Simmons G, Brace WF (1965) Comparison of static and dynamic measurements of compressibility of rocks. J Geophys Res 70(22):5649–5656. https://doi.org/10.1029/JZ070i022p05649

    Article  Google Scholar 

  • Trimmer D (1981) Design criteria for laboratory measurements of low permeability rocks. Geophys Res Lett 8(9):973–975. https://doi.org/10.1029/GL008i009p00973

    Article  Google Scholar 

  • Trimmer D, Bonner B, Heard HC, Duba A (1980) Effect of pressure and stress on water transport in intact and fractured gabbro and granite. J Geophys Res Solid Earth 85(B12):7059–7071. https://doi.org/10.1029/JB085iB12p07059

    Article  Google Scholar 

  • Tutuncu AN, Podio AL, Gregory AR, Sharma MM (1998) Nonlinear viscoelastic behavior of sedimentary rocks, part I: effect of frequency and strain amplitude. Geophysics 63(1):184–194

    Google Scholar 

  • Vidal J, Genter A, Chopin F (2017) Permeable fracture zones in the hard rocks of the geothermal reservoir at Rittershoffen, France. J Geophys Res Solid Earth 122(7):4864–4887

    Google Scholar 

  • Villeneuve MC, Heap MJ, Kushnir AR, Qin T, Baud P, Zhou G, Xu T (2018) Estimating in situ rock mass strength and elastic modulus of granite from the Soultz-sous-Forêts geothermal reservoir (France). Geotherm Energy 6(1):11

    Google Scholar 

  • Walsh JB (1965) Effect of cracks on compressibility of rock. J Geophys Res 70(2):381–389

    Google Scholar 

  • Walsh JB, Brace WF (1972) Elasticity of rock in uniaxial strain. Int J Rock Mech Min Sci Geomech Abstr 9(1):7–15. https://doi.org/10.1016/0148-9062(72)90047-2

    Article  Google Scholar 

  • Wang H, Pan J, Wang S, Zhu H (2015) Relationship between macro-fracture density, P-wave velocity, and permeability of coal. J Appl Geophys 117:111–117

    Google Scholar 

  • Yin C (2018) Test and analysis on the permeability of induced fractures in shale reservoirs. Nat Gas Ind B 5(5):513–522. https://doi.org/10.1016/j.ngib.2018.03.006

    Article  Google Scholar 

  • Zoback MD, Byerlee JD (1975) The effect of microcrack dilatancy on the permeability of Westerly granite. J Geophys Res 80(5):752–755

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Blake.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blake, O.O., Faulkner, D.R. Using Velocities, Density, and Bulk Modulus to Predict the Permeability Evolution of Microfractured Rocks. Rock Mech Rock Eng 53, 4001–4013 (2020). https://doi.org/10.1007/s00603-020-02163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02163-7

Keywords

Navigation